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Carbon Reduction Engineering Method-based Deep Q-learning Algorithm for 

Energy-efficient Scheduling on a Single Batch-processing Machine in 

Semiconductor Manufacturing 

 

Abstract 

The semiconductor industry is a resource-intensive sector that heavily relies on energy, water, 

chemicals, and raw materials. Within the semiconductor manufacturing process, the diffusion 

furnace, ion implantation machine, and plasma etching machine exhibit high energy demands or 

operate at extremely high temperatures, resulting in significant electricity consumption, which is 

usually carbon-intensive. To address energy conservation concerns, the industry adopts batch 

production technology, which allows for the simultaneous processing of multiple products. The 

energy-efficient parallel batch scheduling problem arises from the need to optimize product 

grouping and sequencing. In contrast to existing heuristics, meta-heuristics, and exact algorithms, 

this paper introduces the Deep Q-Network (DQN) algorithm as a novel approach to address the 

proposed problem. The DQN algorithm is built upon the agent’s systematic learning of scheduling 

rules, thereby enabling it to offer guidance for online decision-making regarding the grouping and 

sequencing of products. The efficacy of the algorithm is substantiated through extensive 

computational experiments. 

Keywords: Semiconductor manufacturing, Deep Reinforcement Learning, Parallel Batch 

Scheduling, Less is More, Carbon reduction engineering 

1. Introduction 

The latest International Energy and Climate Conference has shed light on the carbon neutral and 

carbon peak timelines for countries worldwide. Achieving these goals requires extensive efforts 

across various sectors, especially in industries that consume large amounts of energy, such as the 

semiconductor industry. Nowadays, energy efficiency and emission reduction are essential goals for 

semiconductor manufacturing enterprises. According to the 2021 Sustainability Report of Taiwan 

Semiconductor Manufacturing Company, the total consumption of non-renewable energy of TSMC 

in 2021 is 16410 GWh, exceeding the total consumption of over 2.7 million residents in Taipei City 

and 7.2% of Taiwan’s total energy usage (TSMC 2021). With the semiconductor manufacturing 

industry’s high sensitivity to electricity costs, rising prices can lead to exponential growth in product 

costs (Derinkuyu et al. 2020; Ho, Hnaien, and Dugardin 2022).  

Burn-in testing is essential to semiconductor manufacturing to ensure that the integrated circuits 

(ICs) can withstand the stresses of regular use over time. During burn-in testing, the ICs are first 

load in burn-in boards, and then subjected to elevated temperature and electrical stress to accelerate 

any potential failures during regular operation. This allows manufacturers to identify and address 

issues before the ICs are shipped to customers. The temperature used for burn-in testing is typically 

125 °𝐶, considered a ‘worst-case’ operating condition for the ICs. Burn-in ovens, which can process 

multiple burn-in boards simultaneously, are widely used in semiconductor burn-in operations. 

Numerous machines run continuously during semiconductor burn-in operations’ batch production 

and testing phase, consuming stable and high-quality electricity (Huang, Pan, and Guan 2021). Fig. 

1 represents the total energy consumption of TSMC over the past five years. In the production 

process, both renewable and non-renewable energy sources have been gradually increasing in usage. 
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The utilization rate of renewable energy in actual production is significantly low. Carbon dioxide 

emissions from energy consumption account for 83% of the company’s total greenhouse gas 

emissions. This situation is mainly attributed to the indirect emissions produced from the 

procurement of external electricity (TSMC 2021). According to relevant research data, 60% of the 

global semiconductor industry’s carbon emissions in 2021 are caused by manufacturing energy 

consumption. To effectively mitigate carbon emissions in the semiconductor industry, the main 

approaches currently being pursued include greenhouse gas substitution, advanced emission 

reduction methods, process optimization, and the implementation of remote plasma cleaning 

systems (Pelcat 2023; Zhu et al. 2023; Chien, Peng, and Yu 2016; Liang, Tan, and Li 2023). However, 

it is important to recognize that the development of advanced production processes and emission 

reduction systems often entails a lengthy development cycle and significant capital investment. 

Therefore, enhancing energy management and improving energy efficiency has become one of the 

key choices for semiconductor enterprises to reduce carbon emissions. 

 

Fig. 1. Total energy consumption of TSMC 

The problem of energy efficiency and consumption reduction has received increasing research 

attention in recent years. The main approaches to achieving energy efficiency and consumption 

reduction in industry and manufacturing are structural energy efficiency, technical energy efficiency, 

and management energy efficiency (Gahm et al. 2016; Gao et al. 2020). Structural energy efficiency 

involves regulating high-energy-consumption industries through macro-level industrial structure 

optimization, optimizing renewable and non-renewable energy consumption structures, and 

increasing the proportion of renewable energy use. Technical energy efficiency involves improving 

energy utilization by developing equipment and upgrading energy-saving processes, such as 

industrial boiler energy-saving renovation technology. Finally, management energy efficiency 

involves optimizing the production system's management to enable efficient energy use without 

upgrading the hardware environment, such as technology, equipment, and processes. Since managed 

energy efficiency does not require improving and researching the manufacturing hardware 

environment, it has apparent advantages regarding implementation cost and cycle time. 

Consequently, research on energy-saving management mechanisms for related manufacturing 

processes has received significant attention from the management community (Jiang and Powell 

2015; Heydar, Mardaneh, and Loxton 2022; Park and Ham 2022). 

Overall, the semiconductor industry is known for its resource-intensive nature, with significant 

energy consumption being a major concern. Therefore, developing an energy-efficient scheduling 

approach for semiconductor manufacturing is crucial. Additionally, the batch production technology 

used in the semiconductor industry allows for the simultaneous processing of multiple products, 
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leading to the need for effective grouping and sequencing strategies. Traditional heuristics, meta-

heuristics, and exact algorithms have been widely used to address similar problems. However, their 

effectiveness may be limited due to the complexity and variability of the batch-processing 

environment. Hence, the adoption of deep reinforcement learning algorithms, such as the Deep Q-

Network (DQN) algorithm, which has shown promising results in solving scheduling problems, is 

justified. By utilizing the systematic learning capabilities of the DQN algorithm, we aim to optimize 

the energy efficiency in semiconductor manufacturing, while ensuring efficient grouping and 

sequencing of jobs. 

The paper is structured into six sections, starting with an introduction and then a review of related 

works on energy-efficient scheduling problem for a single batch-processing machine with arbitrary 

job sizes (E-SBPM-AJS) problems and the use of deep reinforcement learning for scheduling 

problems in Section 2. Section 3 briefly introduces the studied E-SBPM-AJS problem, with Section 

4 introducing the deep reinforcement learning method used in the paper. Section 5 discusses the 

comparative experiments, analyzes the experimental results, and finally, Section 6 provides 

concluding remarks. 

2. Literature review 

In this section, we provide a comprehensive review of the E-SBPM-AJS model and the 

application of deep reinforcement learning in scheduling problems. 

2.1 Related work of E-SBPM-AJS model 

Batch production is a common method for burn-in operations in semiconductor manufacturing 

(Xu, Chen, and Li 2012; Jia, Li, and Leung 2017; Cigolini et al. 2002). It also often appears in other 

production scenarios, including heat treatment operations in metalworking (Cheng et al. 2013), 3D 

printing operations in additive manufacturing (Zhang et al. 2020), parts hardening synthesis 

operations in aircraft manufacturing (Van etal. 1997), and parts production operations in shoe 

manufacturing (Fanti 1996). Serial batch (s-batch) and parallel batch (p-batch) production are the 

two fundamental types of batch manufacturing processes outlined in earlier literature (Fowler and 

Mnch 2021). This research aims to address the job shop scheduling problem under the parallel batch 

production model, whereby batches of multiple jobs can be processed simultaneously on a single 

batch processor. All jobs within a batch must enter the processor simultaneously, after which the 

batch processor cannot release them until all jobs have been completed, with no ability to interrupt 

the process. 

Previous research has proposed numerous algorithms to tackle the scheduling problem on a single 

batch-processing machine with arbitrary job sizes (SBPM-AJS). Exact and heuristic algorithms 

were the first methods to tackle this problem. Uzsoy (1994) introduced two heuristic algorithms for 

the SBPM-AJS problem, one for minimizing total completion time and another for reducing 

makespan. Several branch-and-bound (B&B) techniques were also developed (Azizoglu and 

Webster 2000; Dupont and Dhaenens-Flipo 2002) to solve the SBPM-AJS problem and to improve 

the B&B algorithm’s efficiency. Researchers suggested integrating the column generation technique 

into the B&B algorithm (Parsa, Karimi and Kashan 2010). Heuristic algorithms have also been 

applied to solve the SBPM-AJS problem. Jolai Ghazvini and Dupont (1998) proposed the DYNA 

heuristic algorithm to minimize mean flow time. Chang and Wang (2004) proposed a three-phase 

heuristic algorithm to reduce the total completion time. Meta-heuristic algorithms have become 

increasingly popular for solving the SBPM-AJS problem. Some of the commonly used meta-

heuristic algorithms include Genetic Algorithm (GA) (Damodaran, Manjeshwar, and Srihari 2006; 
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Kashan, Karimi, and Jolai 2006a; Kashan, Karimi, and Jolai 2006b; Chou 2007), Ant Colony 

Optimization (ACO) (Jia and Leung 2015; Parsa, Karimi, and Husseini 2016), Artificial Bee Colony 

(ABC) (Al-Salamah 2015), and Simulated Annealing (SA) (Melouk, Damodaran, and Chang 2004). 

The choice of algorithm depends on the problem size, complexity, and computational resources 

available. The algorithms used in the above papers are summarized in Table 1. 

Table 1. Algorithms for the SBPM-AJS problems. 

References 

Objectives Algorithms 

Notes 
𝐶𝑚𝑎𝑥 ∑ 𝐶𝑖  Other Exact Heuristic Meta-Heuristic Other 

Uzsoy (1994)        B&B 

Azizoglu and Webster 

(2000) 
  ∑ 𝑤𝑖𝐶𝑖     B&B 

Dupont and Dhaenens-

Flipo (2002) 
       B&B 

Parsa, Karimi and Kashan 

(2010) 
       B&P 

Ghazvini and Dupont 

(1998) 
       DYNA 

Chang and Wang (2004)        Heuristic 

Damodaran, Manjeshwar, 

and Srihari (2006) 
       GA 

Kashan, Karimi, and Jolai 

(2006b) 
       HGA 

Kashan, Karimi, and Jolai 

(2006a) 
       HGA 

Chou (2007)        GA+ DP 

Jia and Leung (2015)        ACO 

Parsa, Karimi, and 

Husseini (2016) 
       ACO 

Al-Salamah (2015)        ABC 

Melouk, Damodaran, and 

Chang (2004) 
       SA 

To render the basic problem model more representative of real-world conditions, researchers have 

conducted in-depth investigations into the SBPM-AJS problem, integrating realistic production 

constraints and scenarios such as job families (Kempf, Uzsoy, and Wang 1998; Koh et al. 2005; 

Rezaeian and Zarook 2018; Alizadeh and Kashan 2019), fuzzy processing times (Kempf, Uzsoy, 

and Wang 1998), release times/dynamic job arrivals (Zhou et al. 2014; Zhou et al. 2018; Zhou et al. 

2021), deteriorating jobs (Kong et al. 2020; Jang et al. 2022), due dates (Zhang, Wu, and Yang 2021; 

Li et al. 2015), and two-agent scheduling (Tan et al. 2011; Wang et al. 2016). However, the 

scheduling model with additional constraints and restrictions is more complex than the basic SBPM-

AJS model, posing challenges for heuristic and exact algorithms. Consequently, meta-heuristic 

algorithms are predominantly employed to obtain near-optimal solutions for these problems. We 

summarize these works in Table 2. 
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Table 2. Algorithms for the SBPM-AJS problems with different features. 

References 

Objectives Features 

Algorithms 
𝐶𝑚𝑎𝑥 ∑ 𝐶𝑖 Other Job family 

Fuzzy 

Environment 
Release times 

Deteriorat 

ing jobs 
Due date Two-agent 

Kempf, Uzsoy, and Wang (1998)          Heuristic 

Koh et al. (2005)   ∑ 𝑤𝑖𝐶𝑖        HGA 

Rezaeian and Zarook (2018)   𝐿𝑚𝑎𝑥       BOGA 

Alizadeh and Kashan (2019)          LCA&OIO 

Cheng, Li, and Chen (2010)          ACO 

Zhou et al. (2014)          Heuristic 

Zhou et al. (2018)   𝐿𝑚𝑎𝑥       PSO 

Zhou et al. (2021)          DE 

Kong et al. (2020)   
𝐶𝑚𝑎𝑥

+ 𝑤 
      H-DP 

Jang et al. (2022)          ACO 

Zhang, Wu, and Yang (2021)   E/T       GA 

Li et al. (2015)   E/T       GA 

Tan et al. (2011)          ACO 

Wang et al. (2016)          Heuristic 
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In recent years, as global environmental and energy problems have grown in urgency, carbon 

reduction engineering has become a significant research subject. The energy-efficient scheduling 

method has been paid much attention because of its low cost and little influence on production. As 

for the batch scheduling problem, researchers have shifted their attention from optimizing time-

related objectives to optimizing energy efficiency. Liu and Huang (2014) constructed two multi-

objective batch scheduling problems where carbon footprint and peak power were used as energy-

saving objectives. A genetic algorithm II (NSGA-II) method based on non dominated sorting was 

proposed to solve this problem. Zeng et al. (2018) considered a multi-objective flexible flow shop 

optimization problem with batch machines, and the total power consumption is one of the primary 

targets for scheduling. A hybrid algorithm combining Tabu search with NSGA-II is presented to 

solve this problem.  

At present, there are few studies of the E-SBPM-AJS problem. Wu, Cheng, and Chu (2021) 

proposed a series of heuristic algorithms to solve the multi-objective E-SBPM-AJS problem with 

Time of Use (TOU) electricity tariffs by transforming the original problem into multiple knapsack 

problem to obtain Pareto solutions about total energy consumption and makespan. Considering the 

impact of machine power and TOU electricity tariffs on energy consumption costs, Wang et al. 

(2016) studied a bi-objective E-SBPM-AJS model that minimizes makespan and total electricity 

consumption costs proposed two types of heuristic algorithms to obtain the Pareto fronts of the 

problem. Zhang et al. (2017) established an E-SBPM-AJS model with a TOU electricity price 

strategy and speed scaling machine mechanism, where machine processing speed is positively 

correlated with machine power consumption (Fang et al. 2016). Zhou et al. (2020) proposed a multi-

objective E-SBPM-AJS model with TOU electricity tariffs and job release times. 

2.2 Application of deep reinforcement learning in a scheduling problem 

Given the excellent performance of reinforcement learning and deep reinforcement learning 

methods in solving complex dynamic decision-making problems, scholars have considered using 

them to solve complex production scheduling problems. The Q-learning algorithm is a 

straightforward method for an agent to learn optimal behavior within a controlled Markov domain 

(Zhou, Jin, and Gu 2020). Wang and Usher (2005) reshaped the traditional single-machine 

scheduling process into a Markov decision process. Based on the current state, the Q learning agent 

must select the appropriate scheduling rule from three potential options to determine the next job to 

process. Zhao et al. (2020) introduced a collaborative water wave optimization algorithm (CWWO) 

to tackle a variant of the flow shop scheduling problem. During the CWWO propagation operation, 

they propose a Q-learning algorithm with variable neighborhood search to ascertain the subsequent 

wave’s position, length, and height. Like the dispatching rule selection proposed by Wang and Usher 

(2005), Zhang et al. (2012) developed an online R-learning algorithm to solve the parallel machine 

scheduling problem with minimizing mean weighted tardiness. The R-learning algorithm is an 

average-reward reinforcement learning algorithm (Schwartz 1993) that selects a job to be processed 

at each decision time step. Zhang et al. (2013) applied the online algorithm to address the flow shop 

scheduling problem. Several dispatching rules related to the flow shop scheduling problem, such as 

SPT, LPT, and FCFS, are designated actions. 

Reinforcement learning is generally constrained to small action spaces, sample spaces, and 

discrete situations. However, more complex optimization problems resembling actual circumstances 

usually involve large state spaces and continuous action spaces. As a result, a deep reinforcement 

learning (DRL) algorithm that combines deep learning and reinforcement learning has been 
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proposed. In the DRL algorithm, the state and action serve as input values for the neural network, 

which enhances its accuracy through continuous training. The trained neural network model can 

then guide the reinforcement learning iterative process. However, research on applying deep 

reinforcement learning algorithms to solve job-shop scheduling problems is scarce. We summarize 

the current work utilizing deep Q network (DQN), a crucial DRL method, for addressing scheduling 

problems. For the dynamic scheduling problem in flexible manufacturing systems, Hu et al. (2020) 

proposed a Petri-net convolution layer based on graph convolutional networks and applied the DQN 

algorithm with prioritized experience replay, which combines reinforcement learning with deep 

neural networks. Waschneck et al. (2018) employed the DQN method for a flexible job shop 

scheduling problem with complex constraints. Palombarini and Martínez (2019) solved the 

rescheduling problem in a workshop production by constructing a deep Q network. Luo (2020) 

applied the Double DQN method to address a job shop scheduling problem with new job insertion. 

The Double DQN algorithm is designed to resolve the overestimation of the Q-value in the DQN 

algorithm. The above works are summarized in Table 3. 

Table 3. Related works on DQN algorithms for scheduling problems. 

References Problems Algorithms 

Wang and Usher (2005)  𝐽|𝑟𝑗 , 𝑑𝑗|∑ 𝑈𝑗 Q-Learning 

Zhao et al. (2020) 𝐹|𝑟𝑗 , 𝑠𝑗 , 𝑑𝑗|𝐶𝑚𝑎𝑥 Q-Learning 

Zhang et al. (2012) 
𝑅|𝑟𝑗 , 𝑑𝑗|

1

𝑛
∑ 𝜔𝑗 𝜋𝑗  

R-Learning 

Zhang et al. (2013) 𝐹|𝑟𝑗 , 𝑠𝑗 , 𝑑𝑗|𝐶𝑚𝑎𝑥 R-Learning 

Hu et al. (2020) 𝐹|𝑟𝑗 , 𝑠𝑗|𝐶𝑚𝑎𝑥 DQN 

Waschneck et al. (2018) 𝐽|𝑑𝑗 , 𝑟𝑗|𝑇𝑚𝑎𝑥 DQN 

Palombarini and Martínez (2019) 
𝐽|𝑟𝑗 ,𝑑𝑗, 𝑠𝑗 , 𝑝𝑟𝑒𝑐| ∑ 𝑇𝑗 

DQN 

Luo (2020) 𝐹|𝑟𝑗 , 𝑑𝑗|𝑇𝑚𝑎𝑥 Double DQN 

Inspired by deep reinforcement learning in other combinatorial optimization problems, this study 

develops a DQN-based algorithm to handle the E-SBPM-AJS problem. The main contributions are 

summarized below. 

(1) We have reconstructed the E-SBPM-AJS model based on the Markov decision process. First, 

the production environment's state is determined according to the batch processing time and the sum 

of the batch’s job sizes. Then, following classical heuristic rules, ten scheduling actions are designed, 

and the reward-setting method is explained under each action. 

(2) The less is more strategy used to reduce the number of actions to accelerate the DRL algorithm 

convergence. Using Taguchi’s experimental design, 12 orthogonal groups of experiments were 

designed, and four actions were selected from ten. 

3. Problem Formulation 

In this section, a MIP model is presented for the E-SBPM-AJS problem. Then, we reconstruct the 

scheduling problem with the Markov decision process. 

3.1 Problem statement 

In the burn-in operations of semiconductor manufacturing, the burn-in boards loaded by ICs are 

tested in the burn-in oven by batches to shorten testing cycle and reduce energy consumption. The 

burn-in testing time of a batch of boards is determined by the longest burn-in testing time of the 
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board in the batch. The E-SBPM-AJS problem aims to minimize the total energy consumption of 

all completed boards while ensuring that the capacity limit of burn-in oven is not exceeded. This 

requires finding the optimal arrangement of burn-in boards into batches, considering their burn-in 

testing times and sizes. The notations used for the E-SBPM-AJS problem are as follows. 

Notations Definitions 

𝑛  Number of burn-in boards 

𝐾  Number of batches for burn-in boards 

𝑗  Index of burn-in board 

𝑘  Index of burn-in board batch 

𝑝𝑗  Burn-in testing time of the 𝑗𝑡ℎ board, 𝑗 = 1, ⋯ , 𝑛 

𝑠𝑗   Size of the 𝑗𝑡ℎ board, 𝑗 = 1, ⋯ , 𝑛 

𝑃𝑘  Burn-in testing time of the 𝑘𝑡ℎ batch, 𝑘 = 1, ⋯ , 𝐾 

𝐿  Capacity of the burn-in oven 

𝐸  Level of energy consumption per unit of time 

Decision variables Definitions 

𝐶𝑘  Completion time of the 𝑘𝑡ℎ batch, 𝑘 = 1, ⋯ , 𝐾 

𝑇𝐸𝐶  Total Energy Consumption for testing burn-in boards 

𝑥𝑗𝑘   1 if burn-in board 𝑗 assigned to batch 𝑘, otherwise 0, 𝑗 = 1, ⋯ , 𝑛, 𝑘 = 1, ⋯ , 𝐾 

As mentioned above, the E-SBPM-AJS problem involves optimizing the processing schedule for a 

batching machine to minimize energy consumption while adhering to capacity limits. Hence, the 

MIP model is given as follows. 

Minimize 𝑇𝐸𝐶 (1) 

Subject to:   

∑ 𝑥𝑗𝑘

𝑛

𝑗=1

= 1 𝑘 = 1, ⋯ , 𝐾 (2) 

∑ 𝑥𝑗𝑘

𝐾

𝑘=1

= 1 𝑗 = 1, ⋯ , 𝑛 (3) 

∑ 𝑠𝑗𝑥𝑗𝑘

𝑛

𝑗=1

≤ 𝐿 𝑘 = 1, ⋯ , 𝐾 (4) 

𝑃𝑘 ≥ 𝑝𝑗𝑥𝑗𝑘 𝑗 = 1, ⋯ , 𝑛, 𝑘 = 1, ⋯ , 𝐾 (5) 

𝐶𝑘 ≥ 𝑃𝑘 + 𝐶𝑘−1 𝑘 = 2, ⋯ , 𝐾 (6) 

𝑇𝐸𝐶 ≥ 𝐸 ∗ 𝐶𝑘  𝑘 = 1, ⋯ , 𝐾 (7) 

𝑥𝑗,𝑘 ∈ (0, 1) 𝑗 = 1, ⋯ , 𝑛, 𝑘 = 1, ⋯ , 𝐾 (8) 

Constraint 2 and 3 guarantee that each burn-in board is tested exactly once. Limiting the total size 

of burn-in boards tested in a batch, constraint 4 ensures that the burn-in oven’s capacity is not 

exceeded. Constraint 5 defines the burn-in testing time of each batch, while constraint 6 calculates 

the completion time of each burn-in board batch. The total energy consumption for testing all burn-

in boards is calculated according to constraint 7. Lastly, constraint 8 specifies the range of decision 

variables. 

Before developing the DRL algorithm, it is essential to formulate the scheduling process as a 

Markov Decision Process (MDP). This involves considering state features, actions, and the reward 
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function. We must determine which burn-in board should be selected at each decision point and 

which batch should accommodate the selected burn-in board. Once the last burn-in board finishes 

testing, the entire schedule is generated. In the following sections, we will introduce the state, action, 

and reward settings. 

3.2 State features 

Here, the production environment is used to represent the information on testing time and total 

size of each burn-in board batch. The testing time and size of the burn-in boards affect the number 

of batches, which is not fixed in the optimal scheduling scheme. The algorithm’s efficiency will be 

negatively affected if the number of batches in the state exceeds the optimal number. Hence, the 

testing time and total size of batches are recorded in the production environment using 2 × 𝑛 

elements. Although some elements might record empty batches, this ensures the possibility of 

discovering the optimal scheduling scheme. Let 𝑆𝑗(𝑡) and 𝑃𝑗(𝑡) be the total size and the testing 

time of the 𝑗𝑡ℎ  batch at decision point 𝑡 , then the production environment at decision point 𝑡 

could be denoted as 𝑋𝑡 = {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡), 𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)}. Fig. 2 shows the 

production environment configurations. 

 

Fig. 2. The production environment configurations 

Zhang et al. (2013) provide several guidelines for creating state features. First, they recommend 

using normalized state characteristics. Second, they emphasize the inclusion of numerical indicators 

to represent the magnitude of state characteristics. Third, they stress the importance of easily 

calculable state features. By adhering to these guidelines, we developed the state features for 

decision point t. 

State feature 1 (𝑿𝒕(𝟏)). The maximum value of the ratio of non-empty batch testing time to 

maximum testing time, which can be written as follows: 

𝑋𝑡(1) = max {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡)} /𝑚𝑎𝑥(𝑝𝑗) (9) 

State feature 2 (𝑿𝒕(𝟐)). The minimum value of the ratio of non-empty batch testing time to 

maximum testing time, which can be written as follows: 

𝑋𝑡(2) = min {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡)|𝑃𝑗(𝑡) > 0}/𝑚𝑎𝑥(𝑝𝑗)  (10) 

State feature 3 (𝑿𝒕(𝟑)). The mean value of the ratio of non-empty batch testing time to maximum 

testing time, which can be written as follows: 

𝑋𝑡(3) = mean {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡)}/𝑚𝑎𝑥(𝑝𝑗)  (11) 

State feature 4 (𝑿𝒕(𝟒)). The maximum value of the ratio of total burn-in board size to capacity 

in a non-empty batch, as expressed in the following form: 

𝑋𝑡(4) = max {𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)}/𝐿  (12) 

State feature 5 (𝑿𝒕(𝟓)). The minimum value of the ratio of total burn-in board size to capacity 

in a non-empty batch, as expressed in the following form: 

𝑋𝑡(5) = min {𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)|𝑆𝑗(𝑡) > 0}/𝐿  (13) 

State feature 6 (𝑿𝒕(𝟔)). The mean value of the ratio of total burn-in board size to capacity in a 

non-empty batch, as expressed in the following form: 

𝑋𝑡(6) = mean {𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)}/𝐿  (14) 

3.3 Actions 



 11 

Considering the capacity constraint of the burn-in oven, we must allocate burn-in boards to 

distinct batches. Since the objective function aims to minimize the total energy consumption, the 

testing sequence of these batches is irrelevant. Assuming there are a total of 𝑛 decision points, we 

must decide at each decision point which burn-in board should be selected and which batch it should 

be added to. We propose four ways to choose candidate burn-in boards and four distinct batch 

organization methodologies. Let 𝑈𝐽𝑡 represent the set of unscheduled jobs at decision time 𝑡 ∈

{1,2, ⋯ , 𝑛}. The rules for selecting jobs are as follows: 

(1) 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡}: Select the burn-in board with the largest testing time among the 

set of unscheduled burn-in boards 𝑈𝐽𝑡. 

(2) 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}: Select the burn-in board with the smallest size among the set of 

unscheduled burn-in boards 𝑈𝐽𝑡. 

(3) 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗/𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}: Select the burn-in board with the largest ratio between testing 

time and size among the set of unscheduled burn-in boards 𝑈𝐽𝑡. 

(4) 𝐽𝑗 ←  Randomly select from 𝑈𝐽𝑡 : Randomly select a burn-in board from the set of 

unscheduled burn-in boards 𝑈𝐽𝑡. 

The common methods of grouping burn-in boards include First-Fit (FF) and Best-Fit (BF) 

(Alahmadi et al. 2014; Li et al. 2021; Hu, Che, and Zhang 2022; Ho et al. 2007). FF assigns a burn-

in board to the first batch that can accommodate it, while BF assigns a burn-in board to a batch that 

can accept the burn-in board while creating the minimum amount of extra space. If no available 

batches can accommodate the burn-in board, the Empty-Fit (EF) method creates a new, empty batch. 

On the other hand, the Random-Fit (RF) method assigns the selected burn-in board to a batch that 

can accommodate it, with the added randomness of selecting the batch. Using these batching and 

burn-in board selection principles, we construct ten actions summarized in Table 4. 

Table 4. Action collection 

Actions Selecting burn-in board Assigning a burn-in board to batch 

1 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡}  First-Fit (FF) 

2 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡}  Best-Fit (BF) 

3 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}  First-Fit (FF) 

4 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}  Best-Fit (BF) 

5 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗/𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}  First-Fit (FF) 

6 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗/𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}  Best-Fit (BF) 

7 𝐽𝑗 ← Randomly select from 𝑈𝐽𝑡 First-Fit (FF) 

8 𝐽𝑗 ← Randomly select from 𝑈𝐽𝑡 Best-Fit (BF) 

9 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡}  Empty-Fit (EF) 

10 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡}  Random-Fit (RF) 

 

3.4 Reward 

Initially, the first half of the current production environment is used to log the processing time for 

each batch. When the processing time of a newly added burn-in board exceeds that of the existing 

batch, the batch processing time is converted to the processing time of the newly added burn-in 

board. Consequently, we must choose whether to replace the original burn-in board in the batch with 

the newly added burn-in board at each decision point. At decision time 𝑡, we obtain the set of burn-

in boards reserved to represent batch processing time, denoted as 𝐽𝑅, and the set of burn-in boards 

discarded, denoted as 𝐽𝑑. The total energy consumption is the product of unit energy consumption 
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and the sum of the processing time for the burn-in boards in 𝐽𝑅, thus we have: 

Primarily, the first half of the current production environment is used to log the processing time 

for each batch. When the processing time of a newly added burn-in board exceeds that of the existing 

batch, the batch processing time is converted to the processing time of the newly added burn-in 

board. Consequently, we must choose whether to replace the original burn-in board in the batch with 

the newly added burn-in board at each decision point. At decision time 𝑛, we obtain the set of burn-

in boards reserved to represent batch processing time, denoted by 𝐽𝑅, and the set of burn-in boards 

discarded, denoted by 𝐽𝑑. The total energy consumption is the product of unit energy consumption 

and the sum of the processing time for the burn-in boards in 𝐽𝑅, thus we have: 

𝑇𝐸𝐶 = 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑅

  (15) 

Additionally, if each burn-in board is individually produced as a batch, the total energy 

consumption can be expressed as: 

It has been determined that the ∑ 𝑝𝑗𝑗∈𝐽𝑑
  value increases the most when the total energy 

consumption is the smallest possible. Thus, the reward at each decision point can be set as the total 

energy consumption of the burn-in boards that were dismissed. 

4. DQN-based Algorithm 

This section introduces the basic Deep Q-Network (DQN) algorithm and the Dueling Network 

and then provides a training procedure for the Dueling DQN method. 

4.1 DQN algorithm 

DQN is a Q-learning algorithm integrating value function approximation with neural network 

technology. It communicates with the production environment via an agent, monitors the current 

state, performs the best possible action, and generates a predetermined set of rewards. Combining 

the state, action, and reward definitions from Section 3, the DQN algorithm is briefly described 

below. 

Assuming a single-batching machine scheduling process is recorded as shown in Fig. 3.  

 

Fig. 3. Whole scheduling process 

We have full knowledge of all actions, states, and rewards before time t, but we do not know what 

will happen at or after 𝑡. Therefore, if we assume that the discount rate is 𝛾, we can write down the 

formula for the discount return (G) as follows: 

𝑈𝑡 = 𝑅𝑡 + 𝛾𝑅
𝑡+1

+ 𝛾2𝑅𝑡+2 +··· + 𝛾𝑛−𝑡𝑅𝑛 (17) 

The magnitude of 𝑈𝑡 is connected to every possible combination of states and actions that may 

occur later. Thus, we can express the value of any action as: 

𝑄𝜋(𝑥𝑡, 𝑎𝑡) = 𝔼[𝑈𝑡|𝑋𝑡 = 𝑥𝑡, 𝐴𝑡 = 𝑎𝑡 , 𝜋] (18) 

Where 𝜋 is the probability density function of the action, and we call the 𝑄𝜋(𝑥𝑡, 𝑎𝑡) as the action 

value function. Then, the value of state s (state value function) is given as: 

𝐸 ∗ ∑ 𝑝𝑗

𝑛

𝑗=1

= 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑅

+ 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑑

= 𝑇𝐸𝐶 + 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑑

 

(16) 
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𝑉𝜋(𝑥𝑡) = 𝔼𝐴𝑡~𝜋(∙|𝑥𝑡)[𝑄𝜋(𝑥𝑡, 𝐴𝑡)] (19) 

The optimal action-value function is denoted as 𝑄∗(𝑥𝑡, 𝑎𝑡), is given as: 

𝑄∗(𝑥𝑡, 𝑎𝑡) = max
𝜋

{𝑄𝜋(𝑥𝑡 , 𝑎𝑡)} 
(20) 

Given the present state at each decision-making point, 𝑄∗(𝑥𝑡, 𝑎𝑡)  can serve as a guide for 

determining the appropriate action. The Q-table is used in the Q-learning method to store all the 

𝑄∗(𝑥𝑡, 𝑎𝑡), but it becomes inefficient when the number of possible state and action combinations is 

huge. To approximate the 𝑄∗(𝑥𝑡, 𝑎𝑡), neural networks are employed in DQN. Thus, we have: 

𝑄∗(𝑥𝑡, 𝑎𝑡) ≈ 𝑄(𝑥𝑡, 𝑎𝑡; 𝜔) (21) 

We then describe how to train DQN with the Temporal Difference (TD) method to determine the 𝜔 

value of the network 𝑄(𝑥𝑡, 𝑎𝑡; 𝜔). In the TD method, we approximate the action value function 

using the observed reward 𝑟𝑡, hence we have: 

𝑄(𝑥𝑡, 𝑎𝑡; 𝜔) ≈ 𝑟𝑡 + 𝛾 ∙ max
𝑎∈𝐴

𝑄(𝑥𝑡+1, 𝑎; 𝜔) 
(22) 

Thus, the loss function 𝐿(𝜔) is given as: 

𝐿(𝜔) = [𝑄(𝑥𝑡, 𝑎𝑡; 𝜔) − 𝑟𝑡 − 𝛾 ∙ max
𝑎∈𝐴

𝑄(𝑥𝑡+1, 𝑎; 𝜔)]2 
(23) 

Assuming the gradient of the loss function 𝐿(𝜔) is 𝛻𝜔𝐿(𝜔), we have: 

𝜔 ← 𝜔 − 𝛻𝜔𝐿(𝜔) (24) 

4.2 Dueling Network  

Dueling Network enhances the structure of the DQN neural network, which also approximates 

the optimal action-value function. Dueling Network introduces the state value function and the 

optimal advantage function to define the optimal action-value function, considering the dual values 

of state and action. The optimal advantage function is defined as: 

𝐷∗(𝑥𝑡, 𝑎𝑡) = 𝑄∗(𝑥𝑡, 𝑎𝑡) − 𝑉∗(𝑥𝑡) (25) 

Where 𝑉∗(𝑥𝑡) = 𝑚𝑎𝑥
𝜋

{𝑉𝜋(𝑥𝑡)} . Due to 𝑉∗(𝑥𝑡) ≥ 𝑄∗(𝑥𝑡, 𝑎𝑡)    thus 𝐷∗(𝑥𝑡, 𝑎𝑡) ≤ 0  and 

𝑚𝑎𝑥
𝑎𝑡∈𝐴𝑡

{𝐷∗(𝑥𝑡, 𝑎𝑡)} = 0. Thus, the optimal action-value function can be rewritten as: 

𝑄∗(𝑥𝑡 , 𝑎𝑡) = 𝑉∗(𝑥𝑡) + 𝐷∗(𝑥𝑡, 𝑎𝑡) − 𝑚𝑎𝑥
𝑎𝑡∈𝐴𝑡

{𝐷∗(𝑥𝑡, 𝑎𝑡)} (26) 

We use neural networks 𝐷(𝑥𝑡, 𝑎𝑡; 𝜔𝐷) and 𝑉(𝑥𝑡; 𝜔𝑉) to approximate 𝑉∗(𝑥𝑡) and 𝐷∗(𝑥𝑡, 𝑎𝑡), 

respectively. Therefore, we give the dueling network as follows: 

𝑄∗(𝑥𝑡, 𝑎𝑡; 𝜔) = 𝑉(𝑥𝑡; 𝜔𝑉) + 𝐷(𝑥𝑡, 𝑎𝑡; 𝜔𝐷) − 𝑚𝑎𝑥
𝑎𝑡∈𝐴𝑡

{𝐷∗(𝑥𝑡, 𝑎𝑡; 𝜔𝐷)} (27) 

where 𝜔 ≜ {𝜔𝑉; 𝜔𝐷} . The network structure of 𝑄∗(𝑥𝑡, 𝑎𝑡; 𝜔)  is shown in Fig. 4. Here, each 

neuron in the network receives its input from the state variable, which consists of six components. 

To emphasize the idea of ‘less is more’, we use the Taguchi approach to narrow the ten potential 

actions to only 4. The input layer is connected to the three convolutional layers, and the output of 

the convolution operation is the feature vectors that feed into the state value network and the 

advantage action network, respectively. Like the advantage action network, the state value network 

consists of three-layered, fully connected networks. While the state value network has a single 

output, the advantage action network has results proportional to the number of actions. Finally, the 

state value network and advantage action network outputs are aggregated as Q-values according to 
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Eq. (27). 

 

Fig. 4. Network structure of Dueling Network with Less is More Strategy 

4.3 Training procedure  

The training procedure for dueling DQN is similar to that of basic DQN, with the introduction of 

the experience replay mechanism and the target network mechanism. The ϵ -greedy method is 

employed to acquire experience, and the tuples containing 𝑥𝑓 , 𝑎𝑓 , 𝑟𝑓 , 𝑥𝑓+1  are randomly 

retrieved from the replay memory 𝐷  to update the parameters of the dueling network 𝜔 ≜

{𝜔𝑉; 𝜔𝐷}. The training process can be summarized in Table 5. 

Table 5. The training framework of the Dueling DQN 

The training process of the Dueling DQN 

1. Initialize parameters 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒  𝜏 

2. Initialize the replay memory 𝐷 with capacity 𝑁 

3. Initialize the action value network 𝑄 with random weight 𝜔 

4. Initialize the target action value network 𝑄̂ with weight 𝜔− = 𝜔 

5. while 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ≤ 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do 

6.     Set 𝑡 = 1 and let 𝑥𝑡 = {0,0,0,0,0,0}    #Reset production environment 

7.     while 𝑡 ≤ 𝑛 do 

8.         Select action 𝑎𝑡 = {
𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑓 𝜀 > 𝑟𝑎𝑛𝑑(0,1)
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑥𝑡, 𝑎, 𝜃)                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

9.         Execute action 𝑎𝑡, and observe the next state 𝑥𝑡+1, reward 𝑟𝑡 

10.         if t<n, then 𝑑𝑜𝑛𝑒 = 0, otherwise 𝑑𝑜𝑛𝑒 = 1 

11.        Store transition (𝑥𝑡, 𝑎𝑡, 𝑟𝑡, 𝑥𝑡+1, 𝑑𝑜𝑛𝑒) in 𝐷 

12.        Sample random minibatch of transitions (𝑥𝑓, 𝑎𝑓, 𝑟𝑓, 𝑥𝑓+1, 𝑑𝑜𝑛𝑒) from 𝐷 

13.        Set 𝑦𝑓 = {
𝑟𝑓                                                             𝑖𝑓 𝑑𝑜𝑛𝑒

𝑟𝑓 + 𝛾 max
𝑎∈𝐴

𝑄(𝑥𝑓+1, 𝑎; 𝜔−)            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

14.        Calculate loss 𝐿(𝜔) = [𝑄(𝑥𝑓, 𝑎𝑓; 𝜔) − 𝑦𝑓]2 

15.        Execute gradient descent process on 𝐿(𝜔) and update 𝜔 

16.     If 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 % 100=0, then let 𝜔− = 𝜏𝜔 + (1 − 𝜏)𝜔− 

 

5. Numerical Experiments 

This section presents the experimental results comparing the Dueling DQN algorithm to other 

algorithms, demonstrating its superiority through a series of comparisons. First, the experimental 

designs are described in Section 5.1, with the Taguchi method used in Section 5.2 to eliminate 

unnecessary actions. Next, Section 5.3 details the training process for the Dueling DQN algorithm. 

Finally, Sections 5.4 and 5.5 evaluate the method's efficiency by comparing it to other common 
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heuristic and meta-heuristic algorithms, showing that it achieves better results. 

5.1 Experimental design 

We performed experiments on various instances of the E-SBPM-AJS problem, following the 

setup proposed by Zhou et al. (2021). Table 6 displays the parameters defined for different 

production arrangements. All algorithms were implemented in Python, and the experiments were 

run on a personal computer with an Intel Core i7-9700 @ 3.0 GHz CPU and 32.0 GB RAM. 

Table 6. Parameter settings of different product configurations. 

Parameters Value 

The number of burn-in boards (N) {50, 100, 200, 300} 

The size of burn-in boards(𝑠𝑗) [1, 20], [10, 30], and [1, 40] 

The processing time of burn-in boards(𝑝𝑗) [1,50] 

The capacity of machine(C) 40 

The unit energy consumption (E) 1 

Table 6 indicates that we considered different total numbers of burn-in boards (50, 100, 200, and 

300) with burn-in board sizes ranging from [1, 20], [10, 30], and [1, 40]. The processing times for 

the burn-in boards were arbitrarily set between 1 and 50, while the capacity of the batching machine 

was fixed at 40 for all instances. We generated ten random groups of cases for each type based on 

the total number of burn-in boards. The parameters used for the Dueling DQN algorithm are listed 

in Table 7. 

Table 7. Parameter settings of the Dueling DQN algorithm 

Parameters Value 

Number of training episodes 2000 

Memory size 20000 

Batch size 32 

Target update 10000 

Epsilon decay 0.0005 

Discount factor 0.99 

Max epsilon 1.0 

Min epsilon 0.1 

Alpha 0.2 

Beta 0.6 

Prior epsilon 0.000001 

 

5.2 Less is More policy 

To ensure the efficiency and convergence of the Dueling DQN algorithm, we evaluated ten 

distinct scheduling rules as actions. However, it is unknown whether all actions can improve 

algorithm performance or if some actions could increase execution time without improving 

efficiency. We utilized the Taguchi approach to address this to eliminate potentially 

underperforming actions (Pei et al. 2022). We conducted orthogonal experiments with ten variables 

and two levels, with level 1 indicating the selection of an action and level 2 indicating its exclusion. 

We trained the algorithm for 3000 episodes and recorded the minimum energy consumption 

achieved during the training process for 12 distinct action combinations as the experiment value. 

Table 8 presents the experimental values for the 12 action combinations utilized in the orthogonal 

experiments. 
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Table 8. Orthogonal Array L12(210) for different instances (100 and 300 burn-in boards). 

Trials Action The mean of total energy 

consumption 

Acti Acti Acti Acti Acti Acti Acti Acti Acti Acti 100 300 

on1 on2 on3 on4 on5 on6 on7 on8 on9 on10 

1 1 1 1 1 1 1 1 1 1 1 1383.8 4304.3 

2 1 1 1 1 1 2 2 2 2 2 1404.2 4425.6 

3 1 1 2 2 2 1 1 1 2 2 1259 4239.3 

4 1 2 1 2 2 1 2 2 1 1 1327.1 4046.1 

5 1 2 2 1 2 2 1 2 1 2 1249.7 4337 

6 1 2 2 2 1 2 2 1 2 1 1351.2 4203.7 

7 2 1 2 2 1 1 2 2 1 2 1322.2 4033.2 

8 2 1 2 1 2 2 2 1 1 1 1259.2 4170.9 

9 2 1 1 2 2 2 1 2 2 1 1256.1 4409.5 

10 2 2 2 1 1 1 1 2 2 1 1434.4 4354.4 

11 2 2 1 2 1 2 1 1 1 2 1417.9 4418 

12 2 2 1 1 2 1 2 1 2 2 1481 4595.1 

Table 9 shows that we investigate two instances with 100 and 300 burn-in boards, respectively. 

The optimal total energy consumption obtained through training with Dueling DQN is used as the 

experimental value for the orthogonal experiments. Based on the empirical analysis of the 

orthogonal experiments, we get the results illustrated in Fig. 5, and Table 8 presents the best level 

values for each action. According to the experimental settings and procedures described above, 

actions 1, 2, 9, and 10 can significantly reduce the total energy consumption in both instances. 

Therefore, we choose these four heuristic rules as the actions for the Dueling DQN algorithm.  

It can be observed that, for the selection of burn-in board, choosing the burn-in board with the 

largest testing time contributes to the improvement of algorithm efficiency. To enhance the 

algorithm’s global search capability, in addition to the BF and FF rules during the batch formation, 

the EF and RF rules from actions 9 and 10 need to be considered. 

 

(a) The instance with 100 burn-in boards (b) The instance with 300 burn-in boards  

Fig. 5. The mean of total energy consumption for each parameter level of all instances 

Table 9. Optimal tuning parameters for total energy consumption (100 and 300 burn-in boards). 

N Parameters 
Action 

1 

Action 

2 

Action 

3 

Action 

4 

Action 

5 

Action 

6 

Action 

7 

Action 

8 

Action 

9 

Action 

10 

100 
Best level 1 1 2 2 2 2 1 2 1 1 

Level value           



 17 

300 
Best level 1 1 2 2 1 1 2 2 1 1 

Level value           

*  indicates that the action is selected, while  implies that it is not. 

5.3 The training process of Dueling DQN 

To evaluate the convergence of the Dueling DQN method, we conducted five separate training 

sessions on the first type of computation instances, which involve 50, 100, 200, and 300 burn-in 

boards with varying random seed values. The number of training episodes was set at 8000 for each 

session. The results of these experiments are displayed in Fig. 6. We can find that the training results 

of the Dueling DQN algorithm exhibit slight fluctuations around 1000 episodes but converge at 

3000 episodes. Thus, in the subsequent experiments, we set the maximum number of training 

episodes for the Dueling DQN algorithm to 3000. 

 

(a) Convergence curve for 50 burn-in boards (b) Convergence curve for 100 burn-in boards 

 

(c) Convergence curve for 200 burn-in boards (d) Convergence curve for 300 burn-in boards 

Fig. 6. Convergence curves for the instances with 50, 100, 200, and 300 burn-in boards 

5.4 Comparison with heuristic algorithms 

To verify the superiority of Dueling DQN, the total 40 experimental results are recorded in 

Appendix Table A1. Here, we summarize the results given in Table A1 into Table 9. The BFD-LPT, 

BFD-RAND, BFD-LPS, and BFD-SJS algorithms are below. 

Procedure of BFD-LPT (BFD-RAND, BFD-LPS, and BFD-SJS) 

Step1 Sort all the burn-in boards by LPT (RAND, LPS, SJS) rule 

Step2 Batch all the burn-in boards in turn by the BFD rule 

Step3 Calculate the total energy consumption for the scheduling solution 

In this problem, burn-in boards in the queue can be ordered before being batched according to 
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different criteria, including Longest Process Time (LPT), Random (RAND) burn-in board sequence, 

Largest Process Time to Job Size Ratio (LPS), and Smallest Job Size (SJS). The BFD rule requires 

that jobs be assigned to the batch with the least remaining space to accommodate the job. This rule 

is applied when grouping batches. Similarly, we also provide the corresponding FFD-LPT, FFD-

RAND, FFD-LPS, and FFD-SJS algorithms, where the FFD rule is used to place the job in the batch 

that can handle it first. 

Procedure of FFD-LPT (FFD-RAND, FFD-LPS, and FFD-SJS) 

Step1 Sort all the jobs by LPT (RAND, LPS, SJS) rule 

Step2 Batch all the burn-in boards in turn by the FFD rule 

Step3 Calculate the total energy consumption for the scheduling solution 

The ALL-RAND and LIMA-RAND approaches enable the agent to interact randomly with the 

production environment by excluding the deep neural network during training. The LIMA-RAND 

algorithm allows the agent to select an action from only 1, 2, 9, and 10 actions, while the ALL-

RAND algorithm grants the agent access to all ten actions. The CPLEX algorithm runs the single 

batching scheduling problem through the CPLEX solver and selects the optimal solution within 

3600 seconds. 

Table 10. The comparison results of Dueling DQN and 11 heuristic algorithms. 

Algorithms Metrics Instances 

50 100 200 300 

BFD-LPT Mean 587.86 1219.37 2325.56 3494.09 

BFD-RAND Mean 670.64 1438.35 2868.49 4383.79 

BFD-LPS Mean 672.26 1410.27 2723.19 4127.74 

BFD-SJS Mean 805.75 1713.85 3374.79 5095.93 

FFD-LPT Mean 691.01 1413.82 2825.41 4173.13 

FFD-RAND Mean 664.78 1434.19 2880.96 4396.18 

FFD-LPS Mean 672.68 1405.68 2705.42 4102.13 

FFD-SJS Mean 801.35 1713.85 3368.11 5081.73 

ALL-RAND Mean 614.94 1318.02 2605.27 3966.43 

LIMA-RAND Mean 581.72 1229.42 2358.36 3552.88 

CPLEX Mean 580.4 1300.87 2923.43 4513.5 

Dueling DQN Mean 579.48 1216.46 2317.08 3499.95 

BFD-LPT Std 76.362 79.713 113.54 144.836 

BFD-RAND Std 65.936 74.494 114.201 118.463 

BFD-LPS Std 83.053 83.008 103.804 196.312 

BFD-SJS Std 99.282 108.636 130.053 173.664 

FFD-LPT Std 92.184 75.107 188.896 150.566 

FFD-RAND Std 70.738 74.226 121.921 128.853 

FFD-LPS Std 83.296 88.102 105.15 192.207 

FFD-SJS Std 92.831 108.636 126.166 176.894 

ALL-RAND Std 73.592 85.46 124.004 151.257 

LIMA-RAND Std 71.985 80.013 116.473 153.928 

CPLEX Std 70.539 82.161 147.164 145.627 

Dueling DQN Std 69.832 77.402 105.511 144.042 

In Table 10, the mean and standard deviation of the best total energy consumption values obtained 



 19 

from 10 runs of each instance type are displayed in orange and green, respectively. Darker colors 

indicate smaller values for both metrics. The results lead to the following conclusions: 

(1) The BFD-LPT, LIMA-RAND, and Dueling DQN algorithms perform well, with Dueling 

DQN being the best among them.  

(2) The performance of the CPLEX algorithm deteriorates as the number of burn-in boards 

increases.  

(3) The BFD-SJS and FFD-SJS algorithms perform poorly, indicating that the SJS rule is 

unsuitable for solving the presented problem. Therefore, the LIMA idea suggests removing the SJS 

actions from the original ten actions.  

(4) Dueling DQN is superior to LIMA-RAND, demonstrating that the DQN mechanism 

effectively guides the search in the desired direction. 

Fig. 7 visually represents the algorithmic performance using a violin diagram. The figure shows 

that Dueling DQN consistently achieves the best results, outperforming other algorithms. 

The findings for the instances with 50 burn-in boards are comparable for Dueling DQN, CPLEX, 

LIMA-RAND, and BFD-LPT, with outcomes hovering around 600. BFD-SJS and FFD-LPS exhibit 

the poorest performance, with results consistently below par, approaching around 800. The variation 

across algorithms is relatively small due to the low number of burn-in boards. 

For the instances with 100 burn-in boards, the benefits and drawbacks of the algorithms become 

apparent. The performance of CPLEX degrades as the number of burn-in boards increases, while 

Dueling DQN, LIMA-RAND, and BFD-LPT maintain relatively similar results, around 1300. BFD-

SJS and FFD-LPS demonstrate the lowest performance, with total energy consumption consistently 

around 1700. 

As the number of instances increases to 200 and 300, Dueling DQN, LIMA-RAND, and BFD-

LPT produce similar results, with some subtle variations. Again, dueling DQN and BFD-LPT are 

comparable, with slightly better results than LIMA-RAND. Overall, Dueling DQN outperforms 

LIMA-RAND and BFD-LPT in most instances, and the difference in outcomes between algorithms 

increases with the size of cases. Therefore, Dueling DQN is a superior choice for addressing large-

scale scheduling problems compared to other algorithms. 

 
(a) Results of instances with 50 burn-in boards (b) Results of instances with 100 burn-in boards 
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(c) Results of instances with 200 burn-in boards (d) Results of instances with 300 burn-in boards 

Fig. 7. Comparison of Dueling DQN algorithm with heuristic algorithms 

 

5.5 Comparison with meta-heuristic algorithms 

Meta-heuristic or intelligent optimization algorithms use computational intelligence mechanisms 

to find the best or satisfactory solution to complex optimization problems (Ahmed et al. 2021). 

These algorithms are based on principles from various fields, such as biology, physics, chemistry, 

society, and art, which provide insight into behavior, function, experience, and rules (Wu et al. 2021). 

Some popular meta-heuristics include Simulated Annealing (Defersha, Obimuyiwa, and Yimer 

2022), Genetic Algorithm (Zhang et al. 2020), Differential Evolution Algorithm (Song et al. 2023), 

Particle Swarm Optimization (Tang et al. 2021), Artificial Fish Swarm Algorithm (Tirkolaee, Goli, 

and Weber 2020), Immune Algorithm (Li et al. 2020), and more. These algorithms utilize random 

search techniques within the solution space, but they exhibit variations in terms of search strategy, 

solution representation, operator manipulation, and global search capability. Given the variations in 

population settings and iteration mechanisms among the aforementioned algorithms, it would be 

unsound to terminate them solely based on a predefined maximum number of iterations. To ensure 

fairness in our evaluations, we have adopted a consistent approach by setting the number of newly 

generated solutions during the iteration process to be 8000 for all algorithms. Other parameters of 

all the compared algorithms used in this paper are defined as Table 11. 

Table 11. Parameters for SA, GA, PSO, IA, and DE 

Algorithms Parameters Description Values 

Simulated 

Annealing(SA) 
lc Number of iteration under every temperature 20 

Genetic 

Algorithm(GA) 

prob_mut Probability of mutation 0.001 

prob_cros Probability of crossover 0.9 

Particle Swarm 

Optimization(PSO) 

w Weights 0.8 

c1 Individual memory 0.5 

c2 Collective memory 0.5 

Immune 

Algorithm(IA) 

T Threshold for affinity. 0.7 

alpha Diversity evaluation index 0.95 

Artificial Fish 

Swarm 

Algorithm(AFSA) 

step 
Maximum proportion of displacement at each 

step 
0.5 

visual Maximum perceptual range of the fish 0.3 

delta Crowding threshold 0.5 

Differential prob_mut Probability of mutation 0.001 
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Evolution(DE) F Coefficient of mutation 0.005 

 

In this study, we evaluate the performance of the DQN algorithm against these meta-heuristics 

and present our findings. We use the scikit-opt Python library, available on GitHub, to implement 

the meta-heuristic algorithms. Two techniques for computing fitness levels are employed, one based 

on the BFD batching rule and the other based on the FFD batching rule. The framework of BFD-

based fitness computation and FFD-based fitness computation is given below. 

BFD-based fitness computation/FFD-based fitness computation 

Step1 Given a sequence of N real numbers between 0 and 1, denoted as 𝑥 = {𝑥1, ⋯ , 𝑥𝑁}. Here, the current 

index list of 𝑥 is 𝑖𝑛𝑑𝑒𝑥 = {1,2, ⋯ , 𝑁}. 

Step2 Sort 𝑥 by the ascending order, then update 𝑖𝑛𝑑𝑒𝑥, and finally sort the burn-in boards using 𝑖𝑛𝑑𝑒𝑥. 

Step3 Applying the BFD/FFD rule to the burn-in boards that have been sorted. 

Step4 Calculate the total energy consumption and utilize it as the fitness value of sequence 𝑥. 

Most meta-heuristic algorithms begin with an initial solution or population and use a 

neighborhood generation rule to generate the next-generation solution or population, with the fitness 

computation method used to evaluate the pros and cons of each individual. Therefore, we 

constructed 12 meta-heuristics based on the two fitness calculation methods. Fig. 8 depicts the 

iterative procedure and classification of the meta-heuristic algorithms. 

 

Fig. 8. The detail about the 12 meta-heuristic algorithms 

The comprehensive findings of the experiments are presented in Appendix Table A2. 

Table 12. The comparison results of Dueling DQN and meta-heuristic algorithms. 

Algorithms Metrics 
Instances 

50 100 200 300 

GA-BFD Mean 605.56 1285.12 2517.25 3836.04 

IA-BFD Mean 626.6 1333.55 2699.82 4193.71 

PSO-BFD Mean 633.34 1340.16 2707 4200.77 

SA-BFD Mean 608.45 1272.51 2633.16 4124.77 

DE-BFD Mean 606.18 1342.47 2754.55 4253.31 

AFSA-BFD Mean 628.77 1369.75 2775.87 4248.33 

GA-FFD Mean 602.81 1279.05 2531.08 3843.46 

IA-FFD Mean 619.49 1339.07 2720.01 4160.88 

PSO-FFD Mean 631.81 1363.98 2725.03 4178.76 



 22 

SA-FFD Mean 610.44 1295.29 2641.56 4170.66 

DE-FFD Mean 607.25 1345.71 2763.12 4245.23 

AFSA-FFD Mean 637.99 1385.6 2794.95 4273.62 

Dueling DQN Mean 579.48 1216.46 2317.08 3499.95 

GA-BFD Std 70.64  75.41  112.53  127.76  

IA-BFD Std 65.87  61.22  95.60  128.75  

PSO-BFD Std 66.29  69.15  107.73  156.69  

SA-BFD Std 71.78  73.84  110.20  143.84  

DE-BFD Std 67.65  70.44  105.71  128.77  

AFSA-BFD Std 68.28  62.81  113.38  146.47  

GA-FFD Std 68.99  77.11  111.38  149.45  

IA-FFD Std 66.10  90.30  108.46  147.46  

PSO-FFD Std 64.07  70.64  136.05  148.40  

SA-FFD Std 60.54  68.83  114.54  135.97  

DE-FFD Std 66.42  79.68  113.89  142.29  

AFSA-FFD Std 70.34  73.98  117.09  136.90  

Dueling DQN Std 69.83  77.40  105.51  144.04  

Here, we present a summary of the results in Appendix Table A2 into Table 12, which compares 

the performance of Dueling DQN and meta-heuristic algorithms. The mean and standard deviation 

metrics for instances with 50, 100, 200, and 300 burn-in boards are presented in Table 12, and a 

corresponding violin diagram is provided in Fig. 9 for easier comparison. Our findings show that, 

when comparing mean and standard deviation metrics, Dueling DQN outperforms the meta-

heuristic algorithms. This conclusion is also clearly visible in Fig. 9. When dealing with instances 

of 50 burn-in boards, Dueling DQN exhibits optimal performance, achieving a mean total energy 

consumption of approximately 600. However, the differences between Dueling DQN and other 

algorithms are insignificant for instances of this size. As a result, it is difficult to determine which 

algorithm is the best based on this criterion alone. For example, with 100 burn-in boards, however, 

the differences between the algorithms become readily apparent. Our results indicate that Dueling 

DQN performs best when dealing with cases of this size, as the results achieved by Dueling DQN 

are much lower than those of other algorithms. While the differences in the results shown by 

different algorithms are subtle, it is clear that Dueling DQN outperforms them significantly. The 

benefits of Dueling DQN are most pronounced for instances with 200 and 300 burn-in boards. 

Compared to other algorithms, Dueling DQN consistently produces much lower total energy 

consumption values. GA-BFD and GA-FFD are the second-best performing algorithms, but they 

are still outperformed by Dueling DQN, mainly when dealing with more significant instances. 

Therefore, it can be argued that the superiority of Dueling DQN over competing algorithms becomes 

increasingly apparent as the size of the cases increases. Overall, our results suggest that Dueling 

DQN is the best algorithm for solving the batch scheduling problem presented in this study. 
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(a) Results of instances with 50 burn-in boards (b) Results of instances with 100 burn-in boards 

 
(c) Results of instances with 200 burn-in boards (d) Results of instances with 300 burn-in boards 

Fig. 9. Comparison of Dueling DQN algorithm with meta-heuristic algorithms 

 

5.6 Policy implication 

The E-SBPM-AJS model and Dueling DQN are essential in management decision-making 

processes such as planning and allocating manufacturing resources, saving electricity consumption, 

and shortening product manufacturing cycles. This work can provide the following insights for 

managers. 

1. Improve Production Efficiency: E-SBPM-AJS model and Dueling DQN can help managers 

optimize the use of resources to avoid waste and delays and improve production efficiency. These 

models allow managers to develop optimal production schedules to maximize productivity while 

avoiding avoidable mistakes and costs. We can compare Dueling DQN and heuristic algorithms to 

illustrate this point. Heuristic algorithms such as BFD-LPT, BFD-RAND, and BFD-LPS are mainly 

derived from manual production experience and are commonly used in the workshop. Compared to 

these experiences, Dueling DQN provides a better solution, achieving lower production and 

manufacturing spans in instances with 50, 100, 200, and 300 burn-in boards. 

2. Achieve Cost Control: Using the E-SBPM-AJS model and Dueling DQN can help managers 

optimize production costs by reducing total energy consumption. According to the comparison 

results between Dueling DQN and CPLEX, DQN often achieves production scheduling solutions 

with lower total energy consumption, reducing production costs for enterprises. 

3. Better Customer Service: Using the E-SBPM-AJS model and Dueling DQN, managers can 

create better production plans to reduce manufacturing cycles, shorten product delivery times, and 

improve customer satisfaction. 

6. Conclusions 

This study addresses the E-SBPM-AJS problem in the semiconductor manufacturing industry. 
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Instead of relying on traditional heuristics, meta-heuristics, or exact algorithms, this paper 

formulates the problem as a Markov decision problem using the deep reinforcement learning 

framework and trains it using the Dueling DQN algorithm. In addition, this work employs the ‘less 

is more’ principle to enhance the algorithm's convergence speed and quality by reducing the action 

set. The experimental results demonstrate that the proposed Dueling DQN algorithm outperforms 

existing heuristic and meta-heuristic algorithms. There is a current policy emphasis on ensuring 

green supply chains in the semiconductor industry in China and elsewhere; this study suggests those 

strategies should be paired with improved scheduling by the firms themselves. 

Furthermore, the proposed algorithm could be extended to handle more complex scheduling 

scenarios by incorporating additional constraints and objectives, such as energy consumption, 

resource allocation, and maintenance schedules. Additionally, investigating the generalization 

capabilities of the algorithm on unseen data or transfer learning to different manufacturing processes 

and systems could be a promising area of future research. Overall, there is still much potential for 

advancing the application of deep reinforcement learning in manufacturing scheduling. 
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Table A1. Comparison results between meta-heuristic algorithms with Dueling DQN 

Instances 
Algorithms 

GA-BFD IA-BFD PSO-BFD SA-BFD DE-BFD AFSA-BFD GA-FFD IA-FFD PSO-FFD SA-FFD DE-FFD AFSA-FFD  Dueling DQN 

50 1 624 648.3 660.9 634 619.4 648.7 620.1 657 662.1 621 613.6 651.9 612.2 

 2 647.3 667.5 686 650.9 641.4 664.9 640.1 652.7 677.2 670.8 634.6 683.3 634.7 

 3 658.8 661.9 644.1 655.8 649.7 659.6 652.9 662.5 670.1 646.2 641.5 676.6 626.7 

 4 611 640.1 623.2 622.5 609.4 642 620.9 620.9 647.5 613 599.9 650.7 581 

 5 679.9 696 734.5 695.3 688.1 716 692 682.9 712.1 688.7 696.9 726.2 674.7 

 6 478.9 516.6 542.1 489 493.8 522.1 508.1 522.2 547 524.1 497.2 530.3 458.3 

 7 505.1 538 540.3 491.8 512 529.6 491.4 512 525.5 521.1 516.4 545.7 475.4 

 8 546.8 556 565.4 560.9 541.4 557.3 528.1 556.1 560.7 548.5 556.1 552 510.5 

 9 635.2 640.6 641 614.5 630.7 649.7 614.7 633.6 636.9 610.1 630.9 653.9 586.9 

 10 668.6 701 695.9 669.8 675.9 697.8 659.8 695 679 660.9 685.4 709.3 634.4 

100 1 1306.5 1376.1 1341.7 1299.5 1348.5 1387.7 1269 1300.1 1366.2 1315.7 1355.5 1400.8 1231.5 

 2 1243 1367 1309.1 1252.3 1311.1 1371.8 1246.1 1346.1 1371.5 1286.7 1307.4 1367.6 1173.6 

 3 1176.6 1238.8 1241.2 1158.6 1218.2 1278.1 1135.7 1198.4 1233.2 1175.1 1216.9 1264.8 1081.6 

 4 1413.8 1432.6 1434.4 1354 1444.5 1460.6 1374.4 1462.6 1448.6 1377.9 1423.6 1458.7 1300.3 

 5 1395.3 1384.3 1442 1388.3 1446.2 1454.1 1392.7 1453.5 1466.8 1379.4 1457.7 1517.5 1355.4 

 6 1274.2 1351.3 1339 1254.4 1336.3 1367.8 1298.6 1322.2 1386.4 1297.6 1340.6 1380.2 1205.7 

 7 1290 1320.6 1368.1 1272.5 1374.3 1397.1 1317.2 1400.7 1402.4 1360.6 1428.1 1397.3 1252.7 

 8 1245.3 1272.9 1256.2 1212.2 1289.9 1285.8 1248 1258.5 1298.5 1236.8 1275.7 1347.9 1171.9 

 9 1204.7 1261 1284.3 1192.9 1290.6 1311.2 1200.8 1244.7 1302.8 1217.8 1263.1 1295.3 1128.6 

 10 1301.8 1330.9 1385.6 1340.4 1365.1 1383.3 1308 1403.9 1363.4 1305.3 1388.5 1425.9 1263.3 

200 1 2452.7 2718.9 2662.7 2544.4 2732.1 2724.1 2470.3 2645.8 2704.7 2522 2717.6 2735.3 2245.3 

 2 2452.8 2667.5 2671.1 2585.2 2717.6 2742.1 2489.8 2663.6 2625.9 2563.1 2714.8 2765.3 2275.4 

 3 2483.6 2707.8 2686.8 2639 2697.8 2737.7 2460.6 2662.2 2668.6 2560.3 2711 2778.6 2263.7 
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 4 2702 2874.9 2912.8 2860 2900.5 2975.7 2701.9 2841.2 2948.4 2760.1 2934.5 3010.2 2489.7 

 5 2459.4 2595.5 2663.5 2549.8 2681.6 2719.3 2503.6 2713.2 2622.1 2609.1 2684.7 2690.9 2276.3 

 6 2600.1 2724.3 2716.6 2714 2824.5 2831.4 2588.4 2826.4 2836.7 2793.5 2858.8 2872.7 2370.8 

 7 2687 2829.4 2875.6 2762.2 2937.7 2948.1 2734.9 2919.3 2940.1 2845.8 2961.8 2947.9 2526.7 

 8 2439.3 2682.8 2638.4 2568.8 2733.1 2718.9 2454.8 2655.5 2687.1 2592.1 2708.4 2751.1 2229.2 

 9 2359.4 2575.6 2555.6 2533.5 2582.2 2599.5 2387.7 2565.9 2557 2551.4 2619.5 2622.4 2193.4 

 10 2536.2 2621.5 2686.9 2574.7 2738.4 2761.9 2518.8 2707 2659.7 2618.2 2720.1 2775.1 2300.3 

300 1 4012.5 4401.7 4439.1 4299.5 4452.9 4482.7 4027 4388.1 4415.4 4415.2 4448.9 4515.4 3697.2 

 2 3725.1 4069.3 4133.3 3968 4183.7 4184.2 3745 4100.7 4110 4107.6 4121.9 4184.5 3356.2 

 3 3878.9 4171.1 4207.4 4194.9 4244.4 4269.1 3870.2 4166.2 4146.9 4187.2 4209.9 4257.2 3513.2 

 4 3915.7 4360 4278.7 4236.9 4370.3 4397.8 3978.4 4284.5 4300.8 4236.9 4368.5 4386.6 3680.4 

 5 3787.8 4053.7 4130 4066 4177.8 4192 3820.6 4142.8 4119.9 4027.2 4222 4239.9 3466.3 

 6 3765.2 4109.7 4051.2 3993.4 4163.8 4097 3765.3 3996.5 3976 4059.1 4123.4 4120.9 3434.8 

 7 3786.4 4166.7 4183.3 4088.9 4195.8 4126.2 3791.4 4087.2 4166.7 4192.4 4237 4230.4 3441.3 

 8 3606.5 4056.9 3969.8 3901.2 4044.8 4042.8 3540.3 3903.1 3986.7 3953.7 4000 4071.1 3227.4 

 9 4014.2 4314.5 4465.1 4322 4426.2 4413 4036.3 4302.8 4378.5 4269.9 4419.5 4415.9 3679 

 10 3868.1 4233.5 4149.8 4176.9 4273.4 4278.5 3860.1 4236.9 4186.7 4257.4 4301.2 4314.3 3503.7 

 

Table A2. Comparison results between heuristic algorithms with Dueling DQN 

Instances 
Algorithms  

BFD-LPT BFD-RAND BFD-LPS BFD-SJS FFD-LPT FFD-RAND FFD-LPS FFD-SJS RAND LIMA-RAND CPLEX Dueling DQN 

50 1 612.2 712.6 657.4 788.7 693.4 677.3 657.4 788.7 627.5 612.2 600 612.2 

 2 634.7 730.7 706.9 849.5 774 724.3 706.9 849.5 672.6 635.8 631.2 634.7 

 3 640.2 683.9 716.4 821 747.3 693.8 716.4 821 656.7 629.3 625.9 626.7 

 4 603.8 652.8 704.1 787.9 686 663.5 704.1 787.9 623.1 584.6 585.2 581 
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 5 700.9 760.9 797 952.3 786.2 755.9 797.9 908.3 707 670.2 649.7 674.7 

 6 459.1 581.8 556.9 654.1 525.3 565.9 556.9 654.1 498.3 462.1 476.5 458.3 

 7 488.1 573.5 545.6 677.9 571 548.8 545.6 677.9 508.8 477.2 465.8 475.4 

 8 515.6 601 594.5 723.8 621 600.9 594.5 723.8 539.8 515.6 514.9 510.5 

 9 589.6 686.8 691.8 890.7 791 686.1 695.1 890.7 638 594.5 593.6 586.9 

 10 634.4 722.4 752 911.6 714.9 731.3 752 911.6 677.6 635.7 661.2 634.4 

100 1 1225.7 1449.8 1460.9 1723.3 1438.6 1455.9 1444.1 1723.3 1333.7 1244.8 1296.3 1231.5 

 2 1182.2 1406.2 1362.7 1627.9 1418.9 1416.5 1360.7 1627.9 1276.8 1192.3 1269.6 1173.6 

 3 1091 1330.3 1280.8 1551.4 1268.5 1317.5 1258.7 1551.4 1165.1 1098.9 1171 1081.6 

 4 1300.5 1537 1461.3 1800.5 1463 1541.9 1490.8 1800.5 1403.5 1313.7 1414.9 1300.3 

 5 1355.4 1540.9 1499.1 1858.6 1506.9 1532.4 1497.7 1858.6 1443.5 1356.6 1383.2 1355.4 

 6 1227.9 1431.5 1467.4 1701.1 1411.1 1423.6 1467.4 1701.1 1332.6 1240.7 1317 1205.7 

 7 1253.4 1507.4 1450.5 1847.5 1418.7 1470.5 1450.5 1847.5 1367 1262.3 1366.1 1252.7 

 8 1164.6 1369.7 1299.1 1600.9 1384.2 1378.8 1297.5 1600.9 1259.4 1177.6 1238.2 1171.9 

 9 1129.7 1354.6 1330.8 1632.7 1321.9 1341.5 1319.6 1632.7 1226.5 1131.3 1194.2 1128.6 

 10 1263.3 1456.1 1490.1 1794.6 1506.4 1463.3 1469.8 1794.6 1372.1 1276 1358.2 1263.3 

200 1 2254.5 2835.1 2631.9 3277.3 2746.6 2846.7 2619.4 3265.6 2555.9 2278.4 2885.6 2245.3 

 2 2290.4 2813.4 2694.3 3301.9 2717 2799.8 2661.3 3301.9 2547.1 2298.3 2855.5 2275.4 

 3 2279.2 2845.3 2653.3 3252.3 2735.9 2858.9 2614 3252.3 2540.8 2306 2937.1 2263.7 

 4 2505.8 3049.4 2888.3 3623.1 3123.2 3049.2 2862 3623.1 2792.2 2535.9 3082.5 2489.7 

 5 2280.3 2826.6 2690.8 3298.8 2717.6 2799.5 2652.7 3298.8 2537.2 2304.6 2882.5 2276.3 

 6 2388.3 2952 2745.6 3457.3 2956.5 2975.6 2744.5 3422.7 2678.2 2413.1 3051.2 2370.8 

 7 2530.7 3055.2 2923.1 3541.7 3155.6 3097.1 2910.4 3521.2 2828.5 2573.1 3136.1 2526.7 

 8 2235.3 2802.4 2666.3 3404.3 2691.1 2829.9 2649 3404.3 2505.3 2267.7 2865.1 2229.2 

 9 2190.4 2701.7 2618.8 3236.9 2601 2704.1 2618.8 3236.9 2451.7 2227.3 2612.4 2193.4 
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 10 2300.7 2803.8 2719.5 3354.3 2809.6 2848.8 2722.1 3354.3 2615.8 2379.2 2926.3 2300.3 

300 1 3688.9 4583.5 4361.7 5253.7 4324.1 4585.9 4368.2 5253.7 4177 3761.3 4757.2 3697.2 

 2 3373.2 4314.7 4004.2 4978.5 3989.4 4320.4 3986.9 4984.9 3796.7 3430.7 4396.1 3356.2 

 3 3514.4 4371.9 4081.8 5078.9 4250.9 4359.6 4047.1 5078.9 3984.7 3574.3 4612.5 3513.2 

 4 3648.3 4496.9 4380.9 5244.8 4303 4523.8 4327.4 5225 4073.3 3694.3 4638.1 3680.4 

 5 3416 4310.8 4028.5 5095.5 4216.6 4346.7 3998.8 5024.7 3924.3 3484.5 4401.1 3466.3 

 6 3431.9 4275.1 4016 4903.4 4036.7 4297.2 3967.5 4891.7 3874.3 3477.1 4342.8 3434.8 

 7 3453.1 4361.7 4069.4 5072.2 4161.9 4361.7 4041.8 5058.9 3965.7 3505.3 4513.7 3441.3 

 8 3228.4 4215.4 3765 4789.4 3914.3 4199.7 3767.2 4772 3706.1 3268.8 4312 3227.4 

 9 3664.4 4534.2 4329.1 5363.9 4365.3 4590.2 4283.8 5363.9 4172.4 3753.8 4602.5 3679 

 10 3522.3 4373.7 4240.8 5179 4169.1 4376.6 4232.6 5163.6 3989.8 3578.7 4559 3503.7 

 


