
 1

Title Page

A Novel Carbon Reduction Engineering Method-based Deep Q-learning

Algorithm for Energy-efficient Scheduling on a Single Batch-processing Machine

in Semiconductor Manufacturing

Min Kong a,b, Weizhong Wanga, Muhammet Deveci c,d,*, Yajing Zhang a, Xuzhong Wu a,*, D'Maris

Coffman c

a School of Economics and Management, Anhui Normal University, Wuhu 241000, PR. China

b School of Management, Hefei University of Technology, Hefei 230009, PR. China

c The Bartlett School of Sustainable Construction, University College London, 1-19 Torrington

Place, London, WC1E 7HB, UK

d Department of Industrial Engineering, Turkish Naval Academy, National Defense University,

Tuzla, Istanbul 34940, Turkey

*Corresponding authors:

muhammetdeveci@gmail.com (Muhammet Deveci); xmuwxz@163.com (Wu Xuzhong)

mailto:muhammetdeveci@gmail.com
mailto:xmuwxz@163.com

 2

Carbon Reduction Engineering Method-based Deep Q-learning Algorithm for

Energy-efficient Scheduling on a Single Batch-processing Machine in

Semiconductor Manufacturing

Abstract

The semiconductor industry is a resource-intensive sector that heavily relies on energy, water,

chemicals, and raw materials. Within the semiconductor manufacturing process, the diffusion

furnace, ion implantation machine, and plasma etching machine exhibit high energy demands or

operate at extremely high temperatures, resulting in significant electricity consumption, which is

usually carbon-intensive. To address energy conservation concerns, the industry adopts batch

production technology, which allows for the simultaneous processing of multiple products. The

energy-efficient parallel batch scheduling problem arises from the need to optimize product

grouping and sequencing. In contrast to existing heuristics, meta-heuristics, and exact algorithms,

this paper introduces the Deep Q-Network (DQN) algorithm as a novel approach to address the

proposed problem. The DQN algorithm is built upon the agent’s systematic learning of scheduling

rules, thereby enabling it to offer guidance for online decision-making regarding the grouping and

sequencing of products. The efficacy of the algorithm is substantiated through extensive

computational experiments.

Keywords: Semiconductor manufacturing, Deep Reinforcement Learning, Parallel Batch

Scheduling, Less is More, Carbon reduction engineering

1. Introduction

The latest International Energy and Climate Conference has shed light on the carbon neutral and

carbon peak timelines for countries worldwide. Achieving these goals requires extensive efforts

across various sectors, especially in industries that consume large amounts of energy, such as the

semiconductor industry. Nowadays, energy efficiency and emission reduction are essential goals for

semiconductor manufacturing enterprises. According to the 2021 Sustainability Report of Taiwan

Semiconductor Manufacturing Company, the total consumption of non-renewable energy of TSMC

in 2021 is 16410 GWh, exceeding the total consumption of over 2.7 million residents in Taipei City

and 7.2% of Taiwan’s total energy usage (TSMC 2021). With the semiconductor manufacturing

industry’s high sensitivity to electricity costs, rising prices can lead to exponential growth in product

costs (Derinkuyu et al. 2020; Ho, Hnaien, and Dugardin 2022).

Burn-in testing is essential to semiconductor manufacturing to ensure that the integrated circuits

(ICs) can withstand the stresses of regular use over time. During burn-in testing, the ICs are first

load in burn-in boards, and then subjected to elevated temperature and electrical stress to accelerate

any potential failures during regular operation. This allows manufacturers to identify and address

issues before the ICs are shipped to customers. The temperature used for burn-in testing is typically

125 °𝐶, considered a ‘worst-case’ operating condition for the ICs. Burn-in ovens, which can process

multiple burn-in boards simultaneously, are widely used in semiconductor burn-in operations.

Numerous machines run continuously during semiconductor burn-in operations’ batch production

and testing phase, consuming stable and high-quality electricity (Huang, Pan, and Guan 2021). Fig.

1 represents the total energy consumption of TSMC over the past five years. In the production

process, both renewable and non-renewable energy sources have been gradually increasing in usage.

 3

The utilization rate of renewable energy in actual production is significantly low. Carbon dioxide

emissions from energy consumption account for 83% of the company’s total greenhouse gas

emissions. This situation is mainly attributed to the indirect emissions produced from the

procurement of external electricity (TSMC 2021). According to relevant research data, 60% of the

global semiconductor industry’s carbon emissions in 2021 are caused by manufacturing energy

consumption. To effectively mitigate carbon emissions in the semiconductor industry, the main

approaches currently being pursued include greenhouse gas substitution, advanced emission

reduction methods, process optimization, and the implementation of remote plasma cleaning

systems (Pelcat 2023; Zhu et al. 2023; Chien, Peng, and Yu 2016; Liang, Tan, and Li 2023). However,

it is important to recognize that the development of advanced production processes and emission

reduction systems often entails a lengthy development cycle and significant capital investment.

Therefore, enhancing energy management and improving energy efficiency has become one of the

key choices for semiconductor enterprises to reduce carbon emissions.

Fig. 1. Total energy consumption of TSMC

The problem of energy efficiency and consumption reduction has received increasing research

attention in recent years. The main approaches to achieving energy efficiency and consumption

reduction in industry and manufacturing are structural energy efficiency, technical energy efficiency,

and management energy efficiency (Gahm et al. 2016; Gao et al. 2020). Structural energy efficiency

involves regulating high-energy-consumption industries through macro-level industrial structure

optimization, optimizing renewable and non-renewable energy consumption structures, and

increasing the proportion of renewable energy use. Technical energy efficiency involves improving

energy utilization by developing equipment and upgrading energy-saving processes, such as

industrial boiler energy-saving renovation technology. Finally, management energy efficiency

involves optimizing the production system's management to enable efficient energy use without

upgrading the hardware environment, such as technology, equipment, and processes. Since managed

energy efficiency does not require improving and researching the manufacturing hardware

environment, it has apparent advantages regarding implementation cost and cycle time.

Consequently, research on energy-saving management mechanisms for related manufacturing

processes has received significant attention from the management community (Jiang and Powell

2015; Heydar, Mardaneh, and Loxton 2022; Park and Ham 2022).

Overall, the semiconductor industry is known for its resource-intensive nature, with significant

energy consumption being a major concern. Therefore, developing an energy-efficient scheduling

approach for semiconductor manufacturing is crucial. Additionally, the batch production technology

used in the semiconductor industry allows for the simultaneous processing of multiple products,

 4

leading to the need for effective grouping and sequencing strategies. Traditional heuristics, meta-

heuristics, and exact algorithms have been widely used to address similar problems. However, their

effectiveness may be limited due to the complexity and variability of the batch-processing

environment. Hence, the adoption of deep reinforcement learning algorithms, such as the Deep Q-

Network (DQN) algorithm, which has shown promising results in solving scheduling problems, is

justified. By utilizing the systematic learning capabilities of the DQN algorithm, we aim to optimize

the energy efficiency in semiconductor manufacturing, while ensuring efficient grouping and

sequencing of jobs.

The paper is structured into six sections, starting with an introduction and then a review of related

works on energy-efficient scheduling problem for a single batch-processing machine with arbitrary

job sizes (E-SBPM-AJS) problems and the use of deep reinforcement learning for scheduling

problems in Section 2. Section 3 briefly introduces the studied E-SBPM-AJS problem, with Section

4 introducing the deep reinforcement learning method used in the paper. Section 5 discusses the

comparative experiments, analyzes the experimental results, and finally, Section 6 provides

concluding remarks.

2. Literature review

In this section, we provide a comprehensive review of the E-SBPM-AJS model and the

application of deep reinforcement learning in scheduling problems.

2.1 Related work of E-SBPM-AJS model

Batch production is a common method for burn-in operations in semiconductor manufacturing

(Xu, Chen, and Li 2012; Jia, Li, and Leung 2017; Cigolini et al. 2002). It also often appears in other

production scenarios, including heat treatment operations in metalworking (Cheng et al. 2013), 3D

printing operations in additive manufacturing (Zhang et al. 2020), parts hardening synthesis

operations in aircraft manufacturing (Van etal. 1997), and parts production operations in shoe

manufacturing (Fanti 1996). Serial batch (s-batch) and parallel batch (p-batch) production are the

two fundamental types of batch manufacturing processes outlined in earlier literature (Fowler and

Mnch 2021). This research aims to address the job shop scheduling problem under the parallel batch

production model, whereby batches of multiple jobs can be processed simultaneously on a single

batch processor. All jobs within a batch must enter the processor simultaneously, after which the

batch processor cannot release them until all jobs have been completed, with no ability to interrupt

the process.

Previous research has proposed numerous algorithms to tackle the scheduling problem on a single

batch-processing machine with arbitrary job sizes (SBPM-AJS). Exact and heuristic algorithms

were the first methods to tackle this problem. Uzsoy (1994) introduced two heuristic algorithms for

the SBPM-AJS problem, one for minimizing total completion time and another for reducing

makespan. Several branch-and-bound (B&B) techniques were also developed (Azizoglu and

Webster 2000; Dupont and Dhaenens-Flipo 2002) to solve the SBPM-AJS problem and to improve

the B&B algorithm’s efficiency. Researchers suggested integrating the column generation technique

into the B&B algorithm (Parsa, Karimi and Kashan 2010). Heuristic algorithms have also been

applied to solve the SBPM-AJS problem. Jolai Ghazvini and Dupont (1998) proposed the DYNA

heuristic algorithm to minimize mean flow time. Chang and Wang (2004) proposed a three-phase

heuristic algorithm to reduce the total completion time. Meta-heuristic algorithms have become

increasingly popular for solving the SBPM-AJS problem. Some of the commonly used meta-

heuristic algorithms include Genetic Algorithm (GA) (Damodaran, Manjeshwar, and Srihari 2006;

 5

Kashan, Karimi, and Jolai 2006a; Kashan, Karimi, and Jolai 2006b; Chou 2007), Ant Colony

Optimization (ACO) (Jia and Leung 2015; Parsa, Karimi, and Husseini 2016), Artificial Bee Colony

(ABC) (Al-Salamah 2015), and Simulated Annealing (SA) (Melouk, Damodaran, and Chang 2004).

The choice of algorithm depends on the problem size, complexity, and computational resources

available. The algorithms used in the above papers are summarized in Table 1.

Table 1. Algorithms for the SBPM-AJS problems.

References

Objectives Algorithms

Notes
𝐶𝑚𝑎𝑥 ∑ 𝐶𝑖 Other Exact Heuristic Meta-Heuristic Other

Uzsoy (1994)     B&B

Azizoglu and Webster

(2000)
 ∑ 𝑤𝑖𝐶𝑖  B&B

Dupont and Dhaenens-

Flipo (2002)
  B&B

Parsa, Karimi and Kashan

(2010)
  B&P

Ghazvini and Dupont

(1998)
   DYNA

Chang and Wang (2004)   Heuristic

Damodaran, Manjeshwar,

and Srihari (2006)
  GA

Kashan, Karimi, and Jolai

(2006b)
  HGA

Kashan, Karimi, and Jolai

(2006a)
  HGA

Chou (2007)   GA+ DP

Jia and Leung (2015)   ACO

Parsa, Karimi, and

Husseini (2016)
   ACO

Al-Salamah (2015)   ABC

Melouk, Damodaran, and

Chang (2004)
  SA

To render the basic problem model more representative of real-world conditions, researchers have

conducted in-depth investigations into the SBPM-AJS problem, integrating realistic production

constraints and scenarios such as job families (Kempf, Uzsoy, and Wang 1998; Koh et al. 2005;

Rezaeian and Zarook 2018; Alizadeh and Kashan 2019), fuzzy processing times (Kempf, Uzsoy,

and Wang 1998), release times/dynamic job arrivals (Zhou et al. 2014; Zhou et al. 2018; Zhou et al.

2021), deteriorating jobs (Kong et al. 2020; Jang et al. 2022), due dates (Zhang, Wu, and Yang 2021;

Li et al. 2015), and two-agent scheduling (Tan et al. 2011; Wang et al. 2016). However, the

scheduling model with additional constraints and restrictions is more complex than the basic SBPM-

AJS model, posing challenges for heuristic and exact algorithms. Consequently, meta-heuristic

algorithms are predominantly employed to obtain near-optimal solutions for these problems. We

summarize these works in Table 2.

 6

Table 2. Algorithms for the SBPM-AJS problems with different features.

References

Objectives Features

Algorithms
𝐶𝑚𝑎𝑥 ∑ 𝐶𝑖 Other Job family

Fuzzy

Environment
Release times

Deteriorat

ing jobs
Due date Two-agent

Kempf, Uzsoy, and Wang (1998)    Heuristic

Koh et al. (2005)   ∑ 𝑤𝑖𝐶𝑖  HGA

Rezaeian and Zarook (2018)  𝐿𝑚𝑎𝑥    BOGA

Alizadeh and Kashan (2019)   LCA&OIO

Cheng, Li, and Chen (2010)   ACO

Zhou et al. (2014)   Heuristic

Zhou et al. (2018) 𝐿𝑚𝑎𝑥   PSO

Zhou et al. (2021)    DE

Kong et al. (2020)
𝐶𝑚𝑎𝑥

+ 𝑤
  H-DP

Jang et al. (2022)    ACO

Zhang, Wu, and Yang (2021) E/T  GA

Li et al. (2015) E/T  GA

Tan et al. (2011)   ACO

Wang et al. (2016)   Heuristic

 7

In recent years, as global environmental and energy problems have grown in urgency, carbon

reduction engineering has become a significant research subject. The energy-efficient scheduling

method has been paid much attention because of its low cost and little influence on production. As

for the batch scheduling problem, researchers have shifted their attention from optimizing time-

related objectives to optimizing energy efficiency. Liu and Huang (2014) constructed two multi-

objective batch scheduling problems where carbon footprint and peak power were used as energy-

saving objectives. A genetic algorithm II (NSGA-II) method based on non dominated sorting was

proposed to solve this problem. Zeng et al. (2018) considered a multi-objective flexible flow shop

optimization problem with batch machines, and the total power consumption is one of the primary

targets for scheduling. A hybrid algorithm combining Tabu search with NSGA-II is presented to

solve this problem.

At present, there are few studies of the E-SBPM-AJS problem. Wu, Cheng, and Chu (2021)

proposed a series of heuristic algorithms to solve the multi-objective E-SBPM-AJS problem with

Time of Use (TOU) electricity tariffs by transforming the original problem into multiple knapsack

problem to obtain Pareto solutions about total energy consumption and makespan. Considering the

impact of machine power and TOU electricity tariffs on energy consumption costs, Wang et al.

(2016) studied a bi-objective E-SBPM-AJS model that minimizes makespan and total electricity

consumption costs proposed two types of heuristic algorithms to obtain the Pareto fronts of the

problem. Zhang et al. (2017) established an E-SBPM-AJS model with a TOU electricity price

strategy and speed scaling machine mechanism, where machine processing speed is positively

correlated with machine power consumption (Fang et al. 2016). Zhou et al. (2020) proposed a multi-

objective E-SBPM-AJS model with TOU electricity tariffs and job release times.

2.2 Application of deep reinforcement learning in a scheduling problem

Given the excellent performance of reinforcement learning and deep reinforcement learning

methods in solving complex dynamic decision-making problems, scholars have considered using

them to solve complex production scheduling problems. The Q-learning algorithm is a

straightforward method for an agent to learn optimal behavior within a controlled Markov domain

(Zhou, Jin, and Gu 2020). Wang and Usher (2005) reshaped the traditional single-machine

scheduling process into a Markov decision process. Based on the current state, the Q learning agent

must select the appropriate scheduling rule from three potential options to determine the next job to

process. Zhao et al. (2020) introduced a collaborative water wave optimization algorithm (CWWO)

to tackle a variant of the flow shop scheduling problem. During the CWWO propagation operation,

they propose a Q-learning algorithm with variable neighborhood search to ascertain the subsequent

wave’s position, length, and height. Like the dispatching rule selection proposed by Wang and Usher

(2005), Zhang et al. (2012) developed an online R-learning algorithm to solve the parallel machine

scheduling problem with minimizing mean weighted tardiness. The R-learning algorithm is an

average-reward reinforcement learning algorithm (Schwartz 1993) that selects a job to be processed

at each decision time step. Zhang et al. (2013) applied the online algorithm to address the flow shop

scheduling problem. Several dispatching rules related to the flow shop scheduling problem, such as

SPT, LPT, and FCFS, are designated actions.

Reinforcement learning is generally constrained to small action spaces, sample spaces, and

discrete situations. However, more complex optimization problems resembling actual circumstances

usually involve large state spaces and continuous action spaces. As a result, a deep reinforcement

learning (DRL) algorithm that combines deep learning and reinforcement learning has been

 8

proposed. In the DRL algorithm, the state and action serve as input values for the neural network,

which enhances its accuracy through continuous training. The trained neural network model can

then guide the reinforcement learning iterative process. However, research on applying deep

reinforcement learning algorithms to solve job-shop scheduling problems is scarce. We summarize

the current work utilizing deep Q network (DQN), a crucial DRL method, for addressing scheduling

problems. For the dynamic scheduling problem in flexible manufacturing systems, Hu et al. (2020)

proposed a Petri-net convolution layer based on graph convolutional networks and applied the DQN

algorithm with prioritized experience replay, which combines reinforcement learning with deep

neural networks. Waschneck et al. (2018) employed the DQN method for a flexible job shop

scheduling problem with complex constraints. Palombarini and Martínez (2019) solved the

rescheduling problem in a workshop production by constructing a deep Q network. Luo (2020)

applied the Double DQN method to address a job shop scheduling problem with new job insertion.

The Double DQN algorithm is designed to resolve the overestimation of the Q-value in the DQN

algorithm. The above works are summarized in Table 3.

Table 3. Related works on DQN algorithms for scheduling problems.

References Problems Algorithms

Wang and Usher (2005) 𝐽|𝑟𝑗 , 𝑑𝑗|∑ 𝑈𝑗 Q-Learning

Zhao et al. (2020) 𝐹|𝑟𝑗 , 𝑠𝑗 , 𝑑𝑗|𝐶𝑚𝑎𝑥 Q-Learning

Zhang et al. (2012)
𝑅|𝑟𝑗 , 𝑑𝑗|

1

𝑛
∑ 𝜔𝑗 𝜋𝑗

R-Learning

Zhang et al. (2013) 𝐹|𝑟𝑗 , 𝑠𝑗 , 𝑑𝑗|𝐶𝑚𝑎𝑥 R-Learning

Hu et al. (2020) 𝐹|𝑟𝑗 , 𝑠𝑗|𝐶𝑚𝑎𝑥 DQN

Waschneck et al. (2018) 𝐽|𝑑𝑗 , 𝑟𝑗|𝑇𝑚𝑎𝑥 DQN

Palombarini and Martínez (2019)
𝐽|𝑟𝑗 ,𝑑𝑗, 𝑠𝑗 , 𝑝𝑟𝑒𝑐| ∑ 𝑇𝑗

DQN

Luo (2020) 𝐹|𝑟𝑗 , 𝑑𝑗|𝑇𝑚𝑎𝑥 Double DQN

Inspired by deep reinforcement learning in other combinatorial optimization problems, this study

develops a DQN-based algorithm to handle the E-SBPM-AJS problem. The main contributions are

summarized below.

(1) We have reconstructed the E-SBPM-AJS model based on the Markov decision process. First,

the production environment's state is determined according to the batch processing time and the sum

of the batch’s job sizes. Then, following classical heuristic rules, ten scheduling actions are designed,

and the reward-setting method is explained under each action.

(2) The less is more strategy used to reduce the number of actions to accelerate the DRL algorithm

convergence. Using Taguchi’s experimental design, 12 orthogonal groups of experiments were

designed, and four actions were selected from ten.

3. Problem Formulation

In this section, a MIP model is presented for the E-SBPM-AJS problem. Then, we reconstruct the

scheduling problem with the Markov decision process.

3.1 Problem statement

In the burn-in operations of semiconductor manufacturing, the burn-in boards loaded by ICs are

tested in the burn-in oven by batches to shorten testing cycle and reduce energy consumption. The

burn-in testing time of a batch of boards is determined by the longest burn-in testing time of the

 9

board in the batch. The E-SBPM-AJS problem aims to minimize the total energy consumption of

all completed boards while ensuring that the capacity limit of burn-in oven is not exceeded. This

requires finding the optimal arrangement of burn-in boards into batches, considering their burn-in

testing times and sizes. The notations used for the E-SBPM-AJS problem are as follows.

Notations Definitions

𝑛 Number of burn-in boards

𝐾 Number of batches for burn-in boards

𝑗 Index of burn-in board

𝑘 Index of burn-in board batch

𝑝𝑗 Burn-in testing time of the 𝑗𝑡ℎ board, 𝑗 = 1, ⋯ , 𝑛

𝑠𝑗 Size of the 𝑗𝑡ℎ board, 𝑗 = 1, ⋯ , 𝑛

𝑃𝑘 Burn-in testing time of the 𝑘𝑡ℎ batch, 𝑘 = 1, ⋯ , 𝐾

𝐿 Capacity of the burn-in oven

𝐸 Level of energy consumption per unit of time

Decision variables Definitions

𝐶𝑘 Completion time of the 𝑘𝑡ℎ batch, 𝑘 = 1, ⋯ , 𝐾

𝑇𝐸𝐶 Total Energy Consumption for testing burn-in boards

𝑥𝑗𝑘 1 if burn-in board 𝑗 assigned to batch 𝑘, otherwise 0, 𝑗 = 1, ⋯ , 𝑛, 𝑘 = 1, ⋯ , 𝐾

As mentioned above, the E-SBPM-AJS problem involves optimizing the processing schedule for a

batching machine to minimize energy consumption while adhering to capacity limits. Hence, the

MIP model is given as follows.

Minimize 𝑇𝐸𝐶 (1)

Subject to:

∑ 𝑥𝑗𝑘

𝑛

𝑗=1

= 1 𝑘 = 1, ⋯ , 𝐾 (2)

∑ 𝑥𝑗𝑘

𝐾

𝑘=1

= 1 𝑗 = 1, ⋯ , 𝑛 (3)

∑ 𝑠𝑗𝑥𝑗𝑘

𝑛

𝑗=1

≤ 𝐿 𝑘 = 1, ⋯ , 𝐾 (4)

𝑃𝑘 ≥ 𝑝𝑗𝑥𝑗𝑘 𝑗 = 1, ⋯ , 𝑛, 𝑘 = 1, ⋯ , 𝐾 (5)

𝐶𝑘 ≥ 𝑃𝑘 + 𝐶𝑘−1 𝑘 = 2, ⋯ , 𝐾 (6)

𝑇𝐸𝐶 ≥ 𝐸 ∗ 𝐶𝑘 𝑘 = 1, ⋯ , 𝐾 (7)

𝑥𝑗,𝑘 ∈ (0, 1) 𝑗 = 1, ⋯ , 𝑛, 𝑘 = 1, ⋯ , 𝐾 (8)

Constraint 2 and 3 guarantee that each burn-in board is tested exactly once. Limiting the total size

of burn-in boards tested in a batch, constraint 4 ensures that the burn-in oven’s capacity is not

exceeded. Constraint 5 defines the burn-in testing time of each batch, while constraint 6 calculates

the completion time of each burn-in board batch. The total energy consumption for testing all burn-

in boards is calculated according to constraint 7. Lastly, constraint 8 specifies the range of decision

variables.

Before developing the DRL algorithm, it is essential to formulate the scheduling process as a

Markov Decision Process (MDP). This involves considering state features, actions, and the reward

 10

function. We must determine which burn-in board should be selected at each decision point and

which batch should accommodate the selected burn-in board. Once the last burn-in board finishes

testing, the entire schedule is generated. In the following sections, we will introduce the state, action,

and reward settings.

3.2 State features

Here, the production environment is used to represent the information on testing time and total

size of each burn-in board batch. The testing time and size of the burn-in boards affect the number

of batches, which is not fixed in the optimal scheduling scheme. The algorithm’s efficiency will be

negatively affected if the number of batches in the state exceeds the optimal number. Hence, the

testing time and total size of batches are recorded in the production environment using 2 × 𝑛

elements. Although some elements might record empty batches, this ensures the possibility of

discovering the optimal scheduling scheme. Let 𝑆𝑗(𝑡) and 𝑃𝑗(𝑡) be the total size and the testing

time of the 𝑗𝑡ℎ batch at decision point 𝑡 , then the production environment at decision point 𝑡

could be denoted as 𝑋𝑡 = {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡), 𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)}. Fig. 2 shows the

production environment configurations.

Fig. 2. The production environment configurations

Zhang et al. (2013) provide several guidelines for creating state features. First, they recommend

using normalized state characteristics. Second, they emphasize the inclusion of numerical indicators

to represent the magnitude of state characteristics. Third, they stress the importance of easily

calculable state features. By adhering to these guidelines, we developed the state features for

decision point t.

State feature 1 (𝑿𝒕(𝟏)). The maximum value of the ratio of non-empty batch testing time to

maximum testing time, which can be written as follows:

𝑋𝑡(1) = max {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡)} /𝑚𝑎𝑥(𝑝𝑗) (9)

State feature 2 (𝑿𝒕(𝟐)). The minimum value of the ratio of non-empty batch testing time to

maximum testing time, which can be written as follows:

𝑋𝑡(2) = min {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡)|𝑃𝑗(𝑡) > 0}/𝑚𝑎𝑥(𝑝𝑗) (10)

State feature 3 (𝑿𝒕(𝟑)). The mean value of the ratio of non-empty batch testing time to maximum

testing time, which can be written as follows:

𝑋𝑡(3) = mean {𝑃1(𝑡), ⋯ , 𝑃𝑗(𝑡), ⋯ , 𝑃𝑛(𝑡)}/𝑚𝑎𝑥(𝑝𝑗) (11)

State feature 4 (𝑿𝒕(𝟒)). The maximum value of the ratio of total burn-in board size to capacity

in a non-empty batch, as expressed in the following form:

𝑋𝑡(4) = max {𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)}/𝐿 (12)

State feature 5 (𝑿𝒕(𝟓)). The minimum value of the ratio of total burn-in board size to capacity

in a non-empty batch, as expressed in the following form:

𝑋𝑡(5) = min {𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)|𝑆𝑗(𝑡) > 0}/𝐿 (13)

State feature 6 (𝑿𝒕(𝟔)). The mean value of the ratio of total burn-in board size to capacity in a

non-empty batch, as expressed in the following form:

𝑋𝑡(6) = mean {𝑆1(𝑡), ⋯ , 𝑆𝑗(𝑡), ⋯ , 𝑆𝑛(𝑡)}/𝐿 (14)

3.3 Actions

 11

Considering the capacity constraint of the burn-in oven, we must allocate burn-in boards to

distinct batches. Since the objective function aims to minimize the total energy consumption, the

testing sequence of these batches is irrelevant. Assuming there are a total of 𝑛 decision points, we

must decide at each decision point which burn-in board should be selected and which batch it should

be added to. We propose four ways to choose candidate burn-in boards and four distinct batch

organization methodologies. Let 𝑈𝐽𝑡 represent the set of unscheduled jobs at decision time 𝑡 ∈

{1,2, ⋯ , 𝑛}. The rules for selecting jobs are as follows:

(1) 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡}: Select the burn-in board with the largest testing time among the

set of unscheduled burn-in boards 𝑈𝐽𝑡.

(2) 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}: Select the burn-in board with the smallest size among the set of

unscheduled burn-in boards 𝑈𝐽𝑡.

(3) 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗/𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡}: Select the burn-in board with the largest ratio between testing

time and size among the set of unscheduled burn-in boards 𝑈𝐽𝑡.

(4) 𝐽𝑗 ← Randomly select from 𝑈𝐽𝑡 : Randomly select a burn-in board from the set of

unscheduled burn-in boards 𝑈𝐽𝑡.

The common methods of grouping burn-in boards include First-Fit (FF) and Best-Fit (BF)

(Alahmadi et al. 2014; Li et al. 2021; Hu, Che, and Zhang 2022; Ho et al. 2007). FF assigns a burn-

in board to the first batch that can accommodate it, while BF assigns a burn-in board to a batch that

can accept the burn-in board while creating the minimum amount of extra space. If no available

batches can accommodate the burn-in board, the Empty-Fit (EF) method creates a new, empty batch.

On the other hand, the Random-Fit (RF) method assigns the selected burn-in board to a batch that

can accommodate it, with the added randomness of selecting the batch. Using these batching and

burn-in board selection principles, we construct ten actions summarized in Table 4.

Table 4. Action collection

Actions Selecting burn-in board Assigning a burn-in board to batch

1 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡} First-Fit (FF)

2 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡} Best-Fit (BF)

3 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡} First-Fit (FF)

4 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡} Best-Fit (BF)

5 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗/𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡} First-Fit (FF)

6 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗/𝑠𝑗|𝑗 ∈ 𝑈𝐽𝑡} Best-Fit (BF)

7 𝐽𝑗 ← Randomly select from 𝑈𝐽𝑡 First-Fit (FF)

8 𝐽𝑗 ← Randomly select from 𝑈𝐽𝑡 Best-Fit (BF)

9 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡} Empty-Fit (EF)

10 𝐽𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥{𝑝𝑗|𝑗 ∈ 𝑈𝐽𝑡} Random-Fit (RF)

3.4 Reward

Initially, the first half of the current production environment is used to log the processing time for

each batch. When the processing time of a newly added burn-in board exceeds that of the existing

batch, the batch processing time is converted to the processing time of the newly added burn-in

board. Consequently, we must choose whether to replace the original burn-in board in the batch with

the newly added burn-in board at each decision point. At decision time 𝑡, we obtain the set of burn-

in boards reserved to represent batch processing time, denoted as 𝐽𝑅, and the set of burn-in boards

discarded, denoted as 𝐽𝑑. The total energy consumption is the product of unit energy consumption

 12

and the sum of the processing time for the burn-in boards in 𝐽𝑅, thus we have:

Primarily, the first half of the current production environment is used to log the processing time

for each batch. When the processing time of a newly added burn-in board exceeds that of the existing

batch, the batch processing time is converted to the processing time of the newly added burn-in

board. Consequently, we must choose whether to replace the original burn-in board in the batch with

the newly added burn-in board at each decision point. At decision time 𝑛, we obtain the set of burn-

in boards reserved to represent batch processing time, denoted by 𝐽𝑅, and the set of burn-in boards

discarded, denoted by 𝐽𝑑. The total energy consumption is the product of unit energy consumption

and the sum of the processing time for the burn-in boards in 𝐽𝑅, thus we have:

𝑇𝐸𝐶 = 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑅

 (15)

Additionally, if each burn-in board is individually produced as a batch, the total energy

consumption can be expressed as:

It has been determined that the ∑ 𝑝𝑗𝑗∈𝐽𝑑
 value increases the most when the total energy

consumption is the smallest possible. Thus, the reward at each decision point can be set as the total

energy consumption of the burn-in boards that were dismissed.

4. DQN-based Algorithm

This section introduces the basic Deep Q-Network (DQN) algorithm and the Dueling Network

and then provides a training procedure for the Dueling DQN method.

4.1 DQN algorithm

DQN is a Q-learning algorithm integrating value function approximation with neural network

technology. It communicates with the production environment via an agent, monitors the current

state, performs the best possible action, and generates a predetermined set of rewards. Combining

the state, action, and reward definitions from Section 3, the DQN algorithm is briefly described

below.

Assuming a single-batching machine scheduling process is recorded as shown in Fig. 3.

Fig. 3. Whole scheduling process

We have full knowledge of all actions, states, and rewards before time t, but we do not know what

will happen at or after 𝑡. Therefore, if we assume that the discount rate is 𝛾, we can write down the

formula for the discount return (G) as follows:

𝑈𝑡 = 𝑅𝑡 + 𝛾𝑅
𝑡+1

+ 𝛾2𝑅𝑡+2 +··· + 𝛾𝑛−𝑡𝑅𝑛 (17)

The magnitude of 𝑈𝑡 is connected to every possible combination of states and actions that may

occur later. Thus, we can express the value of any action as:

𝑄𝜋(𝑥𝑡, 𝑎𝑡) = 𝔼[𝑈𝑡|𝑋𝑡 = 𝑥𝑡, 𝐴𝑡 = 𝑎𝑡 , 𝜋] (18)

Where 𝜋 is the probability density function of the action, and we call the 𝑄𝜋(𝑥𝑡, 𝑎𝑡) as the action

value function. Then, the value of state s (state value function) is given as:

𝐸 ∗ ∑ 𝑝𝑗

𝑛

𝑗=1

= 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑅

+ 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑑

= 𝑇𝐸𝐶 + 𝐸 ∗ ∑ 𝑝𝑗

𝑗∈𝐽𝑑

(16)

 13

𝑉𝜋(𝑥𝑡) = 𝔼𝐴𝑡~𝜋(∙|𝑥𝑡)[𝑄𝜋(𝑥𝑡, 𝐴𝑡)] (19)

The optimal action-value function is denoted as 𝑄∗(𝑥𝑡, 𝑎𝑡), is given as:

𝑄∗(𝑥𝑡, 𝑎𝑡) = max
𝜋

{𝑄𝜋(𝑥𝑡 , 𝑎𝑡)}
(20)

Given the present state at each decision-making point, 𝑄∗(𝑥𝑡, 𝑎𝑡) can serve as a guide for

determining the appropriate action. The Q-table is used in the Q-learning method to store all the

𝑄∗(𝑥𝑡, 𝑎𝑡), but it becomes inefficient when the number of possible state and action combinations is

huge. To approximate the 𝑄∗(𝑥𝑡, 𝑎𝑡), neural networks are employed in DQN. Thus, we have:

𝑄∗(𝑥𝑡, 𝑎𝑡) ≈ 𝑄(𝑥𝑡, 𝑎𝑡; 𝜔) (21)

We then describe how to train DQN with the Temporal Difference (TD) method to determine the 𝜔

value of the network 𝑄(𝑥𝑡, 𝑎𝑡; 𝜔). In the TD method, we approximate the action value function

using the observed reward 𝑟𝑡, hence we have:

𝑄(𝑥𝑡, 𝑎𝑡; 𝜔) ≈ 𝑟𝑡 + 𝛾 ∙ max
𝑎∈𝐴

𝑄(𝑥𝑡+1, 𝑎; 𝜔)
(22)

Thus, the loss function 𝐿(𝜔) is given as:

𝐿(𝜔) = [𝑄(𝑥𝑡, 𝑎𝑡; 𝜔) − 𝑟𝑡 − 𝛾 ∙ max
𝑎∈𝐴

𝑄(𝑥𝑡+1, 𝑎; 𝜔)]2
(23)

Assuming the gradient of the loss function 𝐿(𝜔) is 𝛻𝜔𝐿(𝜔), we have:

𝜔 ← 𝜔 − 𝛻𝜔𝐿(𝜔) (24)

4.2 Dueling Network

Dueling Network enhances the structure of the DQN neural network, which also approximates

the optimal action-value function. Dueling Network introduces the state value function and the

optimal advantage function to define the optimal action-value function, considering the dual values

of state and action. The optimal advantage function is defined as:

𝐷∗(𝑥𝑡, 𝑎𝑡) = 𝑄∗(𝑥𝑡, 𝑎𝑡) − 𝑉∗(𝑥𝑡) (25)

Where 𝑉∗(𝑥𝑡) = 𝑚𝑎𝑥
𝜋

{𝑉𝜋(𝑥𝑡)} . Due to 𝑉∗(𝑥𝑡) ≥ 𝑄∗(𝑥𝑡, 𝑎𝑡) thus 𝐷∗(𝑥𝑡, 𝑎𝑡) ≤ 0 and

𝑚𝑎𝑥
𝑎𝑡∈𝐴𝑡

{𝐷∗(𝑥𝑡, 𝑎𝑡)} = 0. Thus, the optimal action-value function can be rewritten as:

𝑄∗(𝑥𝑡 , 𝑎𝑡) = 𝑉∗(𝑥𝑡) + 𝐷∗(𝑥𝑡, 𝑎𝑡) − 𝑚𝑎𝑥
𝑎𝑡∈𝐴𝑡

{𝐷∗(𝑥𝑡, 𝑎𝑡)} (26)

We use neural networks 𝐷(𝑥𝑡, 𝑎𝑡; 𝜔𝐷) and 𝑉(𝑥𝑡; 𝜔𝑉) to approximate 𝑉∗(𝑥𝑡) and 𝐷∗(𝑥𝑡, 𝑎𝑡),

respectively. Therefore, we give the dueling network as follows:

𝑄∗(𝑥𝑡, 𝑎𝑡; 𝜔) = 𝑉(𝑥𝑡; 𝜔𝑉) + 𝐷(𝑥𝑡, 𝑎𝑡; 𝜔𝐷) − 𝑚𝑎𝑥
𝑎𝑡∈𝐴𝑡

{𝐷∗(𝑥𝑡, 𝑎𝑡; 𝜔𝐷)} (27)

where 𝜔 ≜ {𝜔𝑉; 𝜔𝐷} . The network structure of 𝑄∗(𝑥𝑡, 𝑎𝑡; 𝜔) is shown in Fig. 4. Here, each

neuron in the network receives its input from the state variable, which consists of six components.

To emphasize the idea of ‘less is more’, we use the Taguchi approach to narrow the ten potential

actions to only 4. The input layer is connected to the three convolutional layers, and the output of

the convolution operation is the feature vectors that feed into the state value network and the

advantage action network, respectively. Like the advantage action network, the state value network

consists of three-layered, fully connected networks. While the state value network has a single

output, the advantage action network has results proportional to the number of actions. Finally, the

state value network and advantage action network outputs are aggregated as Q-values according to

 14

Eq. (27).

Fig. 4. Network structure of Dueling Network with Less is More Strategy

4.3 Training procedure

The training procedure for dueling DQN is similar to that of basic DQN, with the introduction of

the experience replay mechanism and the target network mechanism. The ϵ -greedy method is

employed to acquire experience, and the tuples containing 𝑥𝑓 , 𝑎𝑓 , 𝑟𝑓 , 𝑥𝑓+1 are randomly

retrieved from the replay memory 𝐷 to update the parameters of the dueling network 𝜔 ≜

{𝜔𝑉; 𝜔𝐷}. The training process can be summarized in Table 5.

Table 5. The training framework of the Dueling DQN

The training process of the Dueling DQN

1. Initialize parameters 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝜏

2. Initialize the replay memory 𝐷 with capacity 𝑁

3. Initialize the action value network 𝑄 with random weight 𝜔

4. Initialize the target action value network 𝑄̂ with weight 𝜔− = 𝜔

5. while 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ≤ 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do

6. Set 𝑡 = 1 and let 𝑥𝑡 = {0,0,0,0,0,0} #Reset production environment

7. while 𝑡 ≤ 𝑛 do

8. Select action 𝑎𝑡 = {
𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑓 𝜀 > 𝑟𝑎𝑛𝑑(0,1)
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑥𝑡, 𝑎, 𝜃) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

9. Execute action 𝑎𝑡, and observe the next state 𝑥𝑡+1, reward 𝑟𝑡

10. if t<n, then 𝑑𝑜𝑛𝑒 = 0, otherwise 𝑑𝑜𝑛𝑒 = 1

11. Store transition (𝑥𝑡, 𝑎𝑡, 𝑟𝑡, 𝑥𝑡+1, 𝑑𝑜𝑛𝑒) in 𝐷

12. Sample random minibatch of transitions (𝑥𝑓, 𝑎𝑓, 𝑟𝑓, 𝑥𝑓+1, 𝑑𝑜𝑛𝑒) from 𝐷

13. Set 𝑦𝑓 = {
𝑟𝑓 𝑖𝑓 𝑑𝑜𝑛𝑒

𝑟𝑓 + 𝛾 max
𝑎∈𝐴

𝑄(𝑥𝑓+1, 𝑎; 𝜔−) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

14. Calculate loss 𝐿(𝜔) = [𝑄(𝑥𝑓, 𝑎𝑓; 𝜔) − 𝑦𝑓]2

15. Execute gradient descent process on 𝐿(𝜔) and update 𝜔

16. If 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 % 100=0, then let 𝜔− = 𝜏𝜔 + (1 − 𝜏)𝜔−

5. Numerical Experiments

This section presents the experimental results comparing the Dueling DQN algorithm to other

algorithms, demonstrating its superiority through a series of comparisons. First, the experimental

designs are described in Section 5.1, with the Taguchi method used in Section 5.2 to eliminate

unnecessary actions. Next, Section 5.3 details the training process for the Dueling DQN algorithm.

Finally, Sections 5.4 and 5.5 evaluate the method's efficiency by comparing it to other common

 15

heuristic and meta-heuristic algorithms, showing that it achieves better results.

5.1 Experimental design

We performed experiments on various instances of the E-SBPM-AJS problem, following the

setup proposed by Zhou et al. (2021). Table 6 displays the parameters defined for different

production arrangements. All algorithms were implemented in Python, and the experiments were

run on a personal computer with an Intel Core i7-9700 @ 3.0 GHz CPU and 32.0 GB RAM.

Table 6. Parameter settings of different product configurations.

Parameters Value

The number of burn-in boards (N) {50, 100, 200, 300}

The size of burn-in boards(𝑠𝑗) [1, 20], [10, 30], and [1, 40]

The processing time of burn-in boards(𝑝𝑗) [1,50]

The capacity of machine(C) 40

The unit energy consumption (E) 1

Table 6 indicates that we considered different total numbers of burn-in boards (50, 100, 200, and

300) with burn-in board sizes ranging from [1, 20], [10, 30], and [1, 40]. The processing times for

the burn-in boards were arbitrarily set between 1 and 50, while the capacity of the batching machine

was fixed at 40 for all instances. We generated ten random groups of cases for each type based on

the total number of burn-in boards. The parameters used for the Dueling DQN algorithm are listed

in Table 7.

Table 7. Parameter settings of the Dueling DQN algorithm

Parameters Value

Number of training episodes 2000

Memory size 20000

Batch size 32

Target update 10000

Epsilon decay 0.0005

Discount factor 0.99

Max epsilon 1.0

Min epsilon 0.1

Alpha 0.2

Beta 0.6

Prior epsilon 0.000001

5.2 Less is More policy

To ensure the efficiency and convergence of the Dueling DQN algorithm, we evaluated ten

distinct scheduling rules as actions. However, it is unknown whether all actions can improve

algorithm performance or if some actions could increase execution time without improving

efficiency. We utilized the Taguchi approach to address this to eliminate potentially

underperforming actions (Pei et al. 2022). We conducted orthogonal experiments with ten variables

and two levels, with level 1 indicating the selection of an action and level 2 indicating its exclusion.

We trained the algorithm for 3000 episodes and recorded the minimum energy consumption

achieved during the training process for 12 distinct action combinations as the experiment value.

Table 8 presents the experimental values for the 12 action combinations utilized in the orthogonal

experiments.

 16

Table 8. Orthogonal Array L12(210) for different instances (100 and 300 burn-in boards).

Trials Action The mean of total energy

consumption

Acti Acti Acti Acti Acti Acti Acti Acti Acti Acti 100 300

on1 on2 on3 on4 on5 on6 on7 on8 on9 on10

1 1 1 1 1 1 1 1 1 1 1 1383.8 4304.3

2 1 1 1 1 1 2 2 2 2 2 1404.2 4425.6

3 1 1 2 2 2 1 1 1 2 2 1259 4239.3

4 1 2 1 2 2 1 2 2 1 1 1327.1 4046.1

5 1 2 2 1 2 2 1 2 1 2 1249.7 4337

6 1 2 2 2 1 2 2 1 2 1 1351.2 4203.7

7 2 1 2 2 1 1 2 2 1 2 1322.2 4033.2

8 2 1 2 1 2 2 2 1 1 1 1259.2 4170.9

9 2 1 1 2 2 2 1 2 2 1 1256.1 4409.5

10 2 2 2 1 1 1 1 2 2 1 1434.4 4354.4

11 2 2 1 2 1 2 1 1 1 2 1417.9 4418

12 2 2 1 1 2 1 2 1 2 2 1481 4595.1

Table 9 shows that we investigate two instances with 100 and 300 burn-in boards, respectively.

The optimal total energy consumption obtained through training with Dueling DQN is used as the

experimental value for the orthogonal experiments. Based on the empirical analysis of the

orthogonal experiments, we get the results illustrated in Fig. 5, and Table 8 presents the best level

values for each action. According to the experimental settings and procedures described above,

actions 1, 2, 9, and 10 can significantly reduce the total energy consumption in both instances.

Therefore, we choose these four heuristic rules as the actions for the Dueling DQN algorithm.

It can be observed that, for the selection of burn-in board, choosing the burn-in board with the

largest testing time contributes to the improvement of algorithm efficiency. To enhance the

algorithm’s global search capability, in addition to the BF and FF rules during the batch formation,

the EF and RF rules from actions 9 and 10 need to be considered.

(a) The instance with 100 burn-in boards (b) The instance with 300 burn-in boards

Fig. 5. The mean of total energy consumption for each parameter level of all instances

Table 9. Optimal tuning parameters for total energy consumption (100 and 300 burn-in boards).

N Parameters
Action

1

Action

2

Action

3

Action

4

Action

5

Action

6

Action

7

Action

8

Action

9

Action

10

100
Best level 1 1 2 2 2 2 1 2 1 1

Level value          

 17

300
Best level 1 1 2 2 1 1 2 2 1 1

Level value          

*  indicates that the action is selected, while  implies that it is not.

5.3 The training process of Dueling DQN

To evaluate the convergence of the Dueling DQN method, we conducted five separate training

sessions on the first type of computation instances, which involve 50, 100, 200, and 300 burn-in

boards with varying random seed values. The number of training episodes was set at 8000 for each

session. The results of these experiments are displayed in Fig. 6. We can find that the training results

of the Dueling DQN algorithm exhibit slight fluctuations around 1000 episodes but converge at

3000 episodes. Thus, in the subsequent experiments, we set the maximum number of training

episodes for the Dueling DQN algorithm to 3000.

(a) Convergence curve for 50 burn-in boards (b) Convergence curve for 100 burn-in boards

(c) Convergence curve for 200 burn-in boards (d) Convergence curve for 300 burn-in boards

Fig. 6. Convergence curves for the instances with 50, 100, 200, and 300 burn-in boards

5.4 Comparison with heuristic algorithms

To verify the superiority of Dueling DQN, the total 40 experimental results are recorded in

Appendix Table A1. Here, we summarize the results given in Table A1 into Table 9. The BFD-LPT,

BFD-RAND, BFD-LPS, and BFD-SJS algorithms are below.

Procedure of BFD-LPT (BFD-RAND, BFD-LPS, and BFD-SJS)

Step1 Sort all the burn-in boards by LPT (RAND, LPS, SJS) rule

Step2 Batch all the burn-in boards in turn by the BFD rule

Step3 Calculate the total energy consumption for the scheduling solution

In this problem, burn-in boards in the queue can be ordered before being batched according to

 18

different criteria, including Longest Process Time (LPT), Random (RAND) burn-in board sequence,

Largest Process Time to Job Size Ratio (LPS), and Smallest Job Size (SJS). The BFD rule requires

that jobs be assigned to the batch with the least remaining space to accommodate the job. This rule

is applied when grouping batches. Similarly, we also provide the corresponding FFD-LPT, FFD-

RAND, FFD-LPS, and FFD-SJS algorithms, where the FFD rule is used to place the job in the batch

that can handle it first.

Procedure of FFD-LPT (FFD-RAND, FFD-LPS, and FFD-SJS)

Step1 Sort all the jobs by LPT (RAND, LPS, SJS) rule

Step2 Batch all the burn-in boards in turn by the FFD rule

Step3 Calculate the total energy consumption for the scheduling solution

The ALL-RAND and LIMA-RAND approaches enable the agent to interact randomly with the

production environment by excluding the deep neural network during training. The LIMA-RAND

algorithm allows the agent to select an action from only 1, 2, 9, and 10 actions, while the ALL-

RAND algorithm grants the agent access to all ten actions. The CPLEX algorithm runs the single

batching scheduling problem through the CPLEX solver and selects the optimal solution within

3600 seconds.

Table 10. The comparison results of Dueling DQN and 11 heuristic algorithms.

Algorithms Metrics Instances

50 100 200 300

BFD-LPT Mean 587.86 1219.37 2325.56 3494.09

BFD-RAND Mean 670.64 1438.35 2868.49 4383.79

BFD-LPS Mean 672.26 1410.27 2723.19 4127.74

BFD-SJS Mean 805.75 1713.85 3374.79 5095.93

FFD-LPT Mean 691.01 1413.82 2825.41 4173.13

FFD-RAND Mean 664.78 1434.19 2880.96 4396.18

FFD-LPS Mean 672.68 1405.68 2705.42 4102.13

FFD-SJS Mean 801.35 1713.85 3368.11 5081.73

ALL-RAND Mean 614.94 1318.02 2605.27 3966.43

LIMA-RAND Mean 581.72 1229.42 2358.36 3552.88

CPLEX Mean 580.4 1300.87 2923.43 4513.5

Dueling DQN Mean 579.48 1216.46 2317.08 3499.95

BFD-LPT Std 76.362 79.713 113.54 144.836

BFD-RAND Std 65.936 74.494 114.201 118.463

BFD-LPS Std 83.053 83.008 103.804 196.312

BFD-SJS Std 99.282 108.636 130.053 173.664

FFD-LPT Std 92.184 75.107 188.896 150.566

FFD-RAND Std 70.738 74.226 121.921 128.853

FFD-LPS Std 83.296 88.102 105.15 192.207

FFD-SJS Std 92.831 108.636 126.166 176.894

ALL-RAND Std 73.592 85.46 124.004 151.257

LIMA-RAND Std 71.985 80.013 116.473 153.928

CPLEX Std 70.539 82.161 147.164 145.627

Dueling DQN Std 69.832 77.402 105.511 144.042

In Table 10, the mean and standard deviation of the best total energy consumption values obtained

 19

from 10 runs of each instance type are displayed in orange and green, respectively. Darker colors

indicate smaller values for both metrics. The results lead to the following conclusions:

(1) The BFD-LPT, LIMA-RAND, and Dueling DQN algorithms perform well, with Dueling

DQN being the best among them.

(2) The performance of the CPLEX algorithm deteriorates as the number of burn-in boards

increases.

(3) The BFD-SJS and FFD-SJS algorithms perform poorly, indicating that the SJS rule is

unsuitable for solving the presented problem. Therefore, the LIMA idea suggests removing the SJS

actions from the original ten actions.

(4) Dueling DQN is superior to LIMA-RAND, demonstrating that the DQN mechanism

effectively guides the search in the desired direction.

Fig. 7 visually represents the algorithmic performance using a violin diagram. The figure shows

that Dueling DQN consistently achieves the best results, outperforming other algorithms.

The findings for the instances with 50 burn-in boards are comparable for Dueling DQN, CPLEX,

LIMA-RAND, and BFD-LPT, with outcomes hovering around 600. BFD-SJS and FFD-LPS exhibit

the poorest performance, with results consistently below par, approaching around 800. The variation

across algorithms is relatively small due to the low number of burn-in boards.

For the instances with 100 burn-in boards, the benefits and drawbacks of the algorithms become

apparent. The performance of CPLEX degrades as the number of burn-in boards increases, while

Dueling DQN, LIMA-RAND, and BFD-LPT maintain relatively similar results, around 1300. BFD-

SJS and FFD-LPS demonstrate the lowest performance, with total energy consumption consistently

around 1700.

As the number of instances increases to 200 and 300, Dueling DQN, LIMA-RAND, and BFD-

LPT produce similar results, with some subtle variations. Again, dueling DQN and BFD-LPT are

comparable, with slightly better results than LIMA-RAND. Overall, Dueling DQN outperforms

LIMA-RAND and BFD-LPT in most instances, and the difference in outcomes between algorithms

increases with the size of cases. Therefore, Dueling DQN is a superior choice for addressing large-

scale scheduling problems compared to other algorithms.

(a) Results of instances with 50 burn-in boards (b) Results of instances with 100 burn-in boards

 20

(c) Results of instances with 200 burn-in boards (d) Results of instances with 300 burn-in boards

Fig. 7. Comparison of Dueling DQN algorithm with heuristic algorithms

5.5 Comparison with meta-heuristic algorithms

Meta-heuristic or intelligent optimization algorithms use computational intelligence mechanisms

to find the best or satisfactory solution to complex optimization problems (Ahmed et al. 2021).

These algorithms are based on principles from various fields, such as biology, physics, chemistry,

society, and art, which provide insight into behavior, function, experience, and rules (Wu et al. 2021).

Some popular meta-heuristics include Simulated Annealing (Defersha, Obimuyiwa, and Yimer

2022), Genetic Algorithm (Zhang et al. 2020), Differential Evolution Algorithm (Song et al. 2023),

Particle Swarm Optimization (Tang et al. 2021), Artificial Fish Swarm Algorithm (Tirkolaee, Goli,

and Weber 2020), Immune Algorithm (Li et al. 2020), and more. These algorithms utilize random

search techniques within the solution space, but they exhibit variations in terms of search strategy,

solution representation, operator manipulation, and global search capability. Given the variations in

population settings and iteration mechanisms among the aforementioned algorithms, it would be

unsound to terminate them solely based on a predefined maximum number of iterations. To ensure

fairness in our evaluations, we have adopted a consistent approach by setting the number of newly

generated solutions during the iteration process to be 8000 for all algorithms. Other parameters of

all the compared algorithms used in this paper are defined as Table 11.

Table 11. Parameters for SA, GA, PSO, IA, and DE

Algorithms Parameters Description Values

Simulated

Annealing(SA)
lc Number of iteration under every temperature 20

Genetic

Algorithm(GA)

prob_mut Probability of mutation 0.001

prob_cros Probability of crossover 0.9

Particle Swarm

Optimization(PSO)

w Weights 0.8

c1 Individual memory 0.5

c2 Collective memory 0.5

Immune

Algorithm(IA)

T Threshold for affinity. 0.7

alpha Diversity evaluation index 0.95

Artificial Fish

Swarm

Algorithm(AFSA)

step
Maximum proportion of displacement at each

step
0.5

visual Maximum perceptual range of the fish 0.3

delta Crowding threshold 0.5

Differential prob_mut Probability of mutation 0.001

 21

Evolution(DE) F Coefficient of mutation 0.005

In this study, we evaluate the performance of the DQN algorithm against these meta-heuristics

and present our findings. We use the scikit-opt Python library, available on GitHub, to implement

the meta-heuristic algorithms. Two techniques for computing fitness levels are employed, one based

on the BFD batching rule and the other based on the FFD batching rule. The framework of BFD-

based fitness computation and FFD-based fitness computation is given below.

BFD-based fitness computation/FFD-based fitness computation

Step1 Given a sequence of N real numbers between 0 and 1, denoted as 𝑥 = {𝑥1, ⋯ , 𝑥𝑁}. Here, the current

index list of 𝑥 is 𝑖𝑛𝑑𝑒𝑥 = {1,2, ⋯ , 𝑁}.

Step2 Sort 𝑥 by the ascending order, then update 𝑖𝑛𝑑𝑒𝑥, and finally sort the burn-in boards using 𝑖𝑛𝑑𝑒𝑥.

Step3 Applying the BFD/FFD rule to the burn-in boards that have been sorted.

Step4 Calculate the total energy consumption and utilize it as the fitness value of sequence 𝑥.

Most meta-heuristic algorithms begin with an initial solution or population and use a

neighborhood generation rule to generate the next-generation solution or population, with the fitness

computation method used to evaluate the pros and cons of each individual. Therefore, we

constructed 12 meta-heuristics based on the two fitness calculation methods. Fig. 8 depicts the

iterative procedure and classification of the meta-heuristic algorithms.

Fig. 8. The detail about the 12 meta-heuristic algorithms

The comprehensive findings of the experiments are presented in Appendix Table A2.

Table 12. The comparison results of Dueling DQN and meta-heuristic algorithms.

Algorithms Metrics
Instances

50 100 200 300

GA-BFD Mean 605.56 1285.12 2517.25 3836.04

IA-BFD Mean 626.6 1333.55 2699.82 4193.71

PSO-BFD Mean 633.34 1340.16 2707 4200.77

SA-BFD Mean 608.45 1272.51 2633.16 4124.77

DE-BFD Mean 606.18 1342.47 2754.55 4253.31

AFSA-BFD Mean 628.77 1369.75 2775.87 4248.33

GA-FFD Mean 602.81 1279.05 2531.08 3843.46

IA-FFD Mean 619.49 1339.07 2720.01 4160.88

PSO-FFD Mean 631.81 1363.98 2725.03 4178.76

 22

SA-FFD Mean 610.44 1295.29 2641.56 4170.66

DE-FFD Mean 607.25 1345.71 2763.12 4245.23

AFSA-FFD Mean 637.99 1385.6 2794.95 4273.62

Dueling DQN Mean 579.48 1216.46 2317.08 3499.95

GA-BFD Std 70.64 75.41 112.53 127.76

IA-BFD Std 65.87 61.22 95.60 128.75

PSO-BFD Std 66.29 69.15 107.73 156.69

SA-BFD Std 71.78 73.84 110.20 143.84

DE-BFD Std 67.65 70.44 105.71 128.77

AFSA-BFD Std 68.28 62.81 113.38 146.47

GA-FFD Std 68.99 77.11 111.38 149.45

IA-FFD Std 66.10 90.30 108.46 147.46

PSO-FFD Std 64.07 70.64 136.05 148.40

SA-FFD Std 60.54 68.83 114.54 135.97

DE-FFD Std 66.42 79.68 113.89 142.29

AFSA-FFD Std 70.34 73.98 117.09 136.90

Dueling DQN Std 69.83 77.40 105.51 144.04

Here, we present a summary of the results in Appendix Table A2 into Table 12, which compares

the performance of Dueling DQN and meta-heuristic algorithms. The mean and standard deviation

metrics for instances with 50, 100, 200, and 300 burn-in boards are presented in Table 12, and a

corresponding violin diagram is provided in Fig. 9 for easier comparison. Our findings show that,

when comparing mean and standard deviation metrics, Dueling DQN outperforms the meta-

heuristic algorithms. This conclusion is also clearly visible in Fig. 9. When dealing with instances

of 50 burn-in boards, Dueling DQN exhibits optimal performance, achieving a mean total energy

consumption of approximately 600. However, the differences between Dueling DQN and other

algorithms are insignificant for instances of this size. As a result, it is difficult to determine which

algorithm is the best based on this criterion alone. For example, with 100 burn-in boards, however,

the differences between the algorithms become readily apparent. Our results indicate that Dueling

DQN performs best when dealing with cases of this size, as the results achieved by Dueling DQN

are much lower than those of other algorithms. While the differences in the results shown by

different algorithms are subtle, it is clear that Dueling DQN outperforms them significantly. The

benefits of Dueling DQN are most pronounced for instances with 200 and 300 burn-in boards.

Compared to other algorithms, Dueling DQN consistently produces much lower total energy

consumption values. GA-BFD and GA-FFD are the second-best performing algorithms, but they

are still outperformed by Dueling DQN, mainly when dealing with more significant instances.

Therefore, it can be argued that the superiority of Dueling DQN over competing algorithms becomes

increasingly apparent as the size of the cases increases. Overall, our results suggest that Dueling

DQN is the best algorithm for solving the batch scheduling problem presented in this study.

 23

(a) Results of instances with 50 burn-in boards (b) Results of instances with 100 burn-in boards

(c) Results of instances with 200 burn-in boards (d) Results of instances with 300 burn-in boards

Fig. 9. Comparison of Dueling DQN algorithm with meta-heuristic algorithms

5.6 Policy implication

The E-SBPM-AJS model and Dueling DQN are essential in management decision-making

processes such as planning and allocating manufacturing resources, saving electricity consumption,

and shortening product manufacturing cycles. This work can provide the following insights for

managers.

1. Improve Production Efficiency: E-SBPM-AJS model and Dueling DQN can help managers

optimize the use of resources to avoid waste and delays and improve production efficiency. These

models allow managers to develop optimal production schedules to maximize productivity while

avoiding avoidable mistakes and costs. We can compare Dueling DQN and heuristic algorithms to

illustrate this point. Heuristic algorithms such as BFD-LPT, BFD-RAND, and BFD-LPS are mainly

derived from manual production experience and are commonly used in the workshop. Compared to

these experiences, Dueling DQN provides a better solution, achieving lower production and

manufacturing spans in instances with 50, 100, 200, and 300 burn-in boards.

2. Achieve Cost Control: Using the E-SBPM-AJS model and Dueling DQN can help managers

optimize production costs by reducing total energy consumption. According to the comparison

results between Dueling DQN and CPLEX, DQN often achieves production scheduling solutions

with lower total energy consumption, reducing production costs for enterprises.

3. Better Customer Service: Using the E-SBPM-AJS model and Dueling DQN, managers can

create better production plans to reduce manufacturing cycles, shorten product delivery times, and

improve customer satisfaction.

6. Conclusions

This study addresses the E-SBPM-AJS problem in the semiconductor manufacturing industry.

 24

Instead of relying on traditional heuristics, meta-heuristics, or exact algorithms, this paper

formulates the problem as a Markov decision problem using the deep reinforcement learning

framework and trains it using the Dueling DQN algorithm. In addition, this work employs the ‘less

is more’ principle to enhance the algorithm's convergence speed and quality by reducing the action

set. The experimental results demonstrate that the proposed Dueling DQN algorithm outperforms

existing heuristic and meta-heuristic algorithms. There is a current policy emphasis on ensuring

green supply chains in the semiconductor industry in China and elsewhere; this study suggests those

strategies should be paired with improved scheduling by the firms themselves.

Furthermore, the proposed algorithm could be extended to handle more complex scheduling

scenarios by incorporating additional constraints and objectives, such as energy consumption,

resource allocation, and maintenance schedules. Additionally, investigating the generalization

capabilities of the algorithm on unseen data or transfer learning to different manufacturing processes

and systems could be a promising area of future research. Overall, there is still much potential for

advancing the application of deep reinforcement learning in manufacturing scheduling.

Acknowledgments

This research has received financial support from various sources, including the Ministry of

Education of Humanities and Social Science Project [grant number 22YJC630050], the China

Postdoctoral Science Foundation [grant number 2022M710996], the Educational Commission of

Anhui Province [grant number KJ2020A0069], the Natural Science Foundation of Anhui Province

[grant numbers 2108085QG291 and 2108085QG287], Anhui Province University Collaborative

Innovation Project [grant number GXXT-2021-021], Science and Technology Plan Project of Wuhu

[grant number 2021yf49, 2022rkx07], National Natural Science Foundation of China [grant

numbers 72101071 and 72071056], the Key Research and Development Project of Anhui Province

[grant number 2022a05020023].

Data availability statement

The data that support the findings of this study are available from the authors upon reasonable

request.

Reference

Ahmed, A. N., T. Van Lam, N. D. Hung, N. Van Thieu, O. Kisi, and A. El-Shafie. 2021. “A

comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time

series forecasting problem.” Applied Soft Computing 105: 107282.

Alahmadi, A., A. Alnowiser, M. M. Zhu, D. Che, and P. Ghodous. 2014. “Enhanced first-fit

decreasing algorithm for energy-aware job scheduling in cloud.” International Conference on

Computational Science and Computational Intelligence IEEE 2: 69-74..

Alizadeh, N., and A. H. Kashan. 2019. “Enhanced grouping league championship and optics

inspired optimization algorithms for scheduling a batch processing machine with job conflicts

and non-identical job sizes.” Applied soft computing 83: 105657.

Al-Salamah, M. 2015. “Constrained binary artificial bee colony to minimize the makespan for single

machine batch processing with non-identical job sizes.” Applied Soft Computing 29: 379-385.

Azizoglu, M., and S. Webster. 2000. “Scheduling a batch processing machine with non-identical job

sizes.” International Journal of Production Research 38 (10): 2173-2184.

 25

Chang, P. C., and H. M. Wang. 2004. “A heuristic for a batch processing machine scheduled to

minimise total completion time with non-identical job sizes.” The International Journal of

Advanced Manufacturing Technology 24 (7): 615-620.

Cheng, B., K. Li, and B. Chen. 2010. “Scheduling a single batch-processing machine with non-

identical job sizes in fuzzy environment using an improved ant colony optimization.” Journal

of Manufacturing Systems 29 (1): 29-34.

Cheng, B., W. Qi, S. Yang, and X. Hu. 2013. “An improved ant colony optimization for scheduling

identical parallel batching machines with arbitrary job sizes.” Applied Soft Computing Journal

13 (2): 765-772.

Chien, C. F., J. T. Peng, and H. C. Yu. 2016. “Building energy saving performance indices for cleaner

semiconductor manufacturing and an empirical study.” Computers and Industrial Engineering

99: 448-457.

Chou, F. D. 2007. “A joint GA+ DP approach for single burn-in oven scheduling problems with

makespan criterion.” The International Journal of Advanced Manufacturing Technology 35 (5):

587-595.

Cigolini, R., M. Perona, A. Portioli, and T. Zambelli. 2002. “A new dynamic look-ahead scheduling

procedure for batching machines.” Journal of Scheduling 5 (2): 185-204.

Damodaran, P., P. K. Manjeshwar, and K. Srihari. 2006. “Minimizing makespan on a batch-

processing machine with non-identical job sizes using genetic algorithms.” International

journal of production economics 103 (2): 882-891.

Defersha, F. M., D. Obimuyiwa, and A. D. Yimer. 2022. “Mathematical model and simulated

annealing algorithm for setup operator constrained flexible job shop scheduling problem.”

Computers and Industrial Engineering 171: 108487.

Derinkuyu, K., F. Tanrisever, N. Kurt, and G. Ceyhan. 2020. “Optimizing day-ahead electricity

market prices: increasing the total surplus for energy exchange Istanbul.” Manufacturing and

Service Operations Management 22 (4): 700-716.

Dupont, L., and C. Dhaenens-Flipo. 2002. “Minimizing the makespan on a batch machine with non-

identical job sizes: an exact procedure.” Computers and operations research 29 (7): 807-819.

Fang, K., N. Uhan, F. Zhao, and J. Sutherland. 2016. “Scheduling on a Single Machine Under Time-

of-Use Electricity Tariffs.” Annals of Operations Research 238 (1-2): 199–227.

Fanti, M. P., B. Maione, G. Piscitelli, and B. Turchiano. 1996. “Heuristic scheduling of jobs on a

multi-product batch processing machine.” International Journal of Production Research 34 (8):

2163-2186.

Fowler, J. W., and L. Mnch. 2021. “A survey of scheduling with parallel batch (p-batch) processing.”

European Journal of Operational Research 298 (1): 1-24.

Gahm, C., F. Denz, M. Dirr, and A. Tuma. 2016. “Energy-efficient scheduling in manufacturing

companies: A review and research framework.” European Journal of Operational Research 248

(3): 744-757.

Gao, K., Y. Huang, A. Sadollah, and L. Wang. 2020. “A review of energy-efficient scheduling in

intelligent production systems.” Complex and Intelligent Systems 6: 237-249.

Ghazvini, F. J., and L. Dupont. 1998. “Minimizing mean flow times criteria on a single batch

processing machine with non-identical jobs sizes, International Journal of Production

Economics.” 55 (3): 273-280.

Heydar, M., E. Mardaneh, and R. Loxton. 2022. “Approximate dynamic programming for an

 26

energy-efficient parallel machine scheduling problem.” European Journal of Operational

Research 302 (1): 363-380.

Ho, M. H., F. Hnaien, and F. Dugardin. 2022. “Exact method to optimize the total electricity cost in

two-machine permutation flow shop scheduling problem under Time-of-use tariff.” Computers

and Operations Research 144: 105788.

Ho, N. B., J. C. Tay, and E. M. K. La. 2007. “An effective architecture for learning and evolving

flexible job-shop schedules.” European Journal of Operational Research 179 (2): 316-333.

Hu, K., Y. Che, and Z. Zhang. 2022. “Scheduling unrelated additive manufacturing machines with

practical constraints.” Computers and Operations Research 144: 105847.

Hu, L., Z. Liu, W. Hu, Y. Wang, and F. Wu. 2020. “Petri-net-based dynamic scheduling of flexible

manufacturing system via deep reinforcement learning with graph convolutional network.”

Journal of Manufacturing Systems 55: 1-14.

Huang, J., K. Pan, and Y. Guan. 2021. “Multistage stochastic power generation scheduling co-

optimizing energy and ancillary services.” INFORMS Journal on Computing 33 (1): 352-369.

Jang, J. W., Y. J. Kim, and B. S.Kim. 2022. “A Three-Stage ACO-Based Algorithm for Parallel Batch

Loading and Scheduling Problem with Batch Deterioration and Rate-Modifying Activities.”

Mathematics 10 (4): 657.

Jia, Z., and J. Y. T. Leung. 2015. “A meta-heuristic to minimize makespan for parallel batch

machines with arbitrary job sizes.” European Journal of Operational Research 240 (3): 649-

665.

Jia, Z., X. Li, and J. Y. T Leung. 2017. “Minimizing makespan for arbitrary size jobs with release

times on P-batch machines with arbitrary capacities.” Future Generation Computer Systems

67: 22-34.

Jiang, D. R., and W. B. Powell. 2015. “Optimal hour-ahead bidding in the real-time electricity

market with battery storage using approximate dynamic programming.” INFORMS Journal on

Computing 27 (3): 525-543.

Kashan, A. H., B. Karimi, and F. Jolai. 2006a. “Effective hybrid genetic algorithm for minimizing

makespan on a single-batch-processing machine with non-identical job sizes.” International

Journal of Production Research 44 (12): 2337-2360.

Kashan, A. H., B. Karimi, and F. Jolai. 2006b. “Minimizing makespan on a single batch processing

machine with non-identical job sizes: a hybrid genetic approach.” European Conference on

Evolutionary Computation in Combinatorial Optimization Springer Berlin. Heidelberg 135-

146.

Kempf, K. G., R. Uzsoy, and C. S. Wang. 1998. “Scheduling a single batch processing machine with

secondary resource constraints.” Journal of Manufacturing Systems 17 (1) : 37-51.

Koh, S. G., P. H. Koo, D. C. Kim, and W. S Hur. 2005. “Scheduling a single batch processing

machine with arbitrary job sizes and incompatible job families.” International Journal of

Production Economics 98 (1): 81-96.

Kong, M., X. B. Liu, J. Pei, Z. P. Zhou, and P. M. Pardalos. 2020. “Parallel-batching scheduling of

deteriorating jobs with non-identical sizes and rejection on a single machine.” Optimization

Letters 14 (4): 857-871.

Li, D., J. Wang, R. Qiang, and R. Chiong. 2021. “A hybrid differential evolution algorithm for

parallel machine scheduling of lace dyeing considering colour families, sequence-dependent

setup and machine eligibility.” International Journal of Production Research 59 (9): 2722-2738.

 27

Li, J., Z. Liu, C. Li, and Z. Zheng. 2020. “Improved artificial immune system algorithm for type-2

fuzzy flexible job shop scheduling problem.” IEEE Transactions on Fuzzy Systems 29 (11):

3234-3248.

Li, Z., H. Chen, R. Xu, and X. Li. 2015. “Earliness–tardiness minimization on scheduling a batch

processing machine with non-identical job sizes.” Computers and Industrial Engineering 87:

590-599.

Liang, Y., K. Tan, and Y. Li. 2023. “Implementation Principles of Optimal Control Technology for

the Reduction of Greenhouse Gases in Semiconductor Industry.” E3S Web of Conferences 394:

01031.

Liu, C H, and D. H. Huang. 2014. “Reduction of power consumption and carbon footprints by

applying multi-objective optimisation via genetic algorithms.” International Journal of

Production Research 52 (1-2): 337-352.

Luo, S. 2020. “Dynamic scheduling for flexible job shop with new job insertions by deep

reinforcement learning.” Applied Soft Computing 91: 106208.

Melouk, S., P. Damodaran, and P. Y.Chang. 2004. “Minimizing makespan for single machine batch

processing with non-identical job sizes using simulated annealing.” International journal of

production economics 87 (2): 141-147.

Palombarini, J. A., and E. C. Martínez. 2019. “Closed-loop rescheduling using deep reinforcement

learning.” IFAC-PapersOnLine 52 (1): 231-236.

Park, M. J., and A. Ham. 2022. “Energy-aware flexible job shop scheduling under time-of-use

pricing.” International Journal of Production Economics 248: 108507.

Parsa, N. R., B. Karimi, and A. H. Kashan. 2010. “A branch and price algorithm to minimize

makespan on a single batch processing machine with non-identical job sizes.” Computers and

Operations Research 37 (10): 1720-1730.

Parsa, N. R., B. Karimi, and S. M. Husseini. 2016. “Minimizing total flow time on a batch

processing machine using a hybrid max-min ant system.” Computers and Industrial

Engineering 99: 372-381.

Pei, J., H. Wang, M. Kong, N. Mladenovic, and P. M. Pardalos. 2022. “Bi-level scheduling in high-

end equipment R&D: when more algorithm strategies may not be better.” International Journal

of Production Research 1-32.

Pelcat, M. 2023. “GHG emissions of semiconductor manufacturing in 2021.” Univ Rennes

INSA Rennes CNRS IETR–UMR 6164 F-35000 Rennes.

Rezaeian, J., and Y. Zarook. 2018. “An Efficient Bi-objective Genetic Algorithm for the Single

Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time

and Non-identical Job Sizes.” Journal of Optimization in Industrial Engineering 1 (2): 65-78.

Schwartz, A.. 1993. “A Reinforcement Learning Method for Maximizing Undiscounted Rewards.”

Machine Learning Proceedings 298: 298-305.

Song Y., X. Cai, X. Zhou, B. Zhang, H.Chen, Y. Li, W. Deng, and W. Deng. 2023. “Dynamic hybrid

mechanism-based differential evolution algorithm and its application.” Expert Systems with

Applications 213: 118834.

Tan, Q., H. P. Chen, B. Du, and X. L. Li. 2011. “Two-agent scheduling on a single batch processing

machine with non-identical job sizes.” 2011 2nd International Conference on Artificial

Intelligence. Management Science and Electronic Commerce (AIMSEC) IEEE: 7431-7435.

Tang, X., C. Shi, T. Deng, Z. Wu, and L. Yang. 2021. “Parallel random matrix particle swarm

 28

optimization scheduling algorithms with budget constraints on cloud computing systems.”

Applied Soft Computing 113: 107914.

Tirkolaee, E. B., A. Goli, and G. W. Weber. 2020. “Fuzzy mathematical programming and self-

adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling

problem with outsourcing option.” IEEE transactions on fuzzy systems 28 (11): 2772-2783.

TSMC. 2021. “TSMC 2021 Sustainability Report.”

https://www.tsmc.com/english/aboutTSMC/dc_csr_report.

Uzsoy, R. 1994. “Scheduling a Single Batch Processing Machine with Non-identical Job Sizes.”

The International Journal of Production Research 32 (7): 1615-1635.

Van, D. R. D. J., A. Van Harten, and P. C. Schuur. 1997. “Dynamic job assignment heuristics for

multi-server batch operations : a cost based approach.” International Journal of Production

Research 35 (11): 3063-3094.

Wang, J. Q., G. Q. Fan, Y. Zhang, C. W., and J. Y. T. Leung. 2016. “Two-agent scheduling on a

single parallel-batching machine with equal processing time and non-identical job sizes.”

European Journal of Operational Research 258 (2): 478-490.

Wang, S., M. Liu, F. Chu, and C. Chu. 2016. “Bi-objective optimization of a single machine batch

scheduling problem with energy cost consideration.” Journal of Cleaner Production 137: 1205-

1215.

Wang, Y. C., and J. M. Usher. 2005. “Application of reinforcement learning for agent-based

production scheduling.” Engineering Applications of Artificial Intelligence 18 (1): 73-82.

Waschneck, B., A. Reichstaller, L. Belzner, T. Altenmüller, and A. Kyek. “Optimization of global

production scheduling with deep reinforcement learning.” Procedia Cirp 72: 1264-1269.

Watkins, C. J., and P. Dayan. 1992. “Q-learning, Machine learning.” 8 (3): 279-292.

Wu, P., J. Cheng, and F. Chu. 2021. “Large-scale energy-conscious bi-objective single-machine

batch scheduling under time-of-use electricity tariffs via effective iterative heuristics.” Annals

of Operations Research 296 (1): 471-494.

Wu, Y. 2021. “A survey on population-based meta-heuristic algorithms for motion planning of

aircraft.” Swarm and Evolutionary Computation 62: 100844.

Xu, R., H. Chen, and X. Li. 2012. “Makespan minimization on single batch-processing machine via

ant colony optimization.” Computers and operations research 39 (3): 582-593.

Zeng, Z., M. Hong, Y. Man, J. Li, and Z. Yang. 2018. “Multi-object optimization of flexible flow

shop scheduling with batch process - Consideration total electricity consumption and material

wastage.” Journal of Cleaner Production 183 (MAY 10): 925-939.

Zhang, G., Y. Hu, J. Sun, and W. Zhang. 2020. “An improved genetic algorithm for the flexible job

shop scheduling problem with multiple time constraints.” Swarm and Evolutionary

Computation 54: 100664.

Zhang, H., F. Wu, and Z. Yang. 2021. “Hybrid approach for a single-batch-processing machine

scheduling problem with a just-in-time objective and consideration of non-identical due dates

of jobs.” Computers and Operations Research 128: 105194.

Zhang, J., X. Yao, and Y. Li. 2020. “Improved evolutionary algorithm for parallel batch processing

machine scheduling in additive manufacturing.” International Journal of Production Research

58 (8): 2263-2282.

Zhang, S., A. Che, X. Wu, and C. Chu. 2017. “Improved mixed-integer linear programming model

and heuristics for bi-objective single-machine batch scheduling with energy cost consideration.”

 29

Engineering Optimization 50 (8): 1380-1394.

Zhang, Z., W. Wang, S. Zhong, and H. U. Kaishun. 2013. “Flow shop scheduling with reinforcement

learning.” Asia-Pacific Journal of Operational Research 30 (05): 1350014.

Zhang, Z., Z. Li, L. Na, W. Wang, and K.Hu. 2012. “Minimizing mean weighted tardiness in

unrelated parallel machine scheduling with reinforcement learning.” Computers and operations

research 39 (7): 1315-1324.

Zhao, F., L. Zhang, J. Cao, and J. Tang. 2020. “A cooperative water wave optimization algorithm

with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem.”

Computers and Industrial Engineering 153: 107082.

Zhou, H., J. Pang, P. K. Chen, and F. D Chou. 2018. “A modified particle swarm optimization

algorithm for a batch-processing machine scheduling problem with arbitrary release times and

non-identical job sizes.” Computers and Industrial Engineering 123: 67-81.

Zhou, S., H. Chen, R. Xu, and X. Li. 2014. “Minimising makespan on a single batch processing

machine with dynamic job arrivals and non-identical job sizes.” International Journal of

Production Research 52 (8): 2258-2274.

Zhou, S., L. Xing, X. Zheng, N. Du, L. Wang, and Q. Zhang. 2021. “A self-adaptive differential

evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes

and release times.” IEEE transactions on cybernetics 51 (3): 1430-1442.

Zhou, S., M. Jin, and N. Du. 2020. “Energy-efficient scheduling of a single batch processing

machine with dynamic job arrival times.” Energy 209: 118420.

Zhu, S., H. Hu, H. Yang, Y. Qu, and Y. Li. 2023. “Mini-Review of Best Practices for Greenhouse

Gas Reduction in Singapore’s Semiconductor Industry.” Processes 11 (7): 2120.

 30

Table A1. Comparison results between meta-heuristic algorithms with Dueling DQN

Instances
Algorithms

GA-BFD IA-BFD PSO-BFD SA-BFD DE-BFD AFSA-BFD GA-FFD IA-FFD PSO-FFD SA-FFD DE-FFD AFSA-FFD Dueling DQN

50 1 624 648.3 660.9 634 619.4 648.7 620.1 657 662.1 621 613.6 651.9 612.2

 2 647.3 667.5 686 650.9 641.4 664.9 640.1 652.7 677.2 670.8 634.6 683.3 634.7

 3 658.8 661.9 644.1 655.8 649.7 659.6 652.9 662.5 670.1 646.2 641.5 676.6 626.7

 4 611 640.1 623.2 622.5 609.4 642 620.9 620.9 647.5 613 599.9 650.7 581

 5 679.9 696 734.5 695.3 688.1 716 692 682.9 712.1 688.7 696.9 726.2 674.7

 6 478.9 516.6 542.1 489 493.8 522.1 508.1 522.2 547 524.1 497.2 530.3 458.3

 7 505.1 538 540.3 491.8 512 529.6 491.4 512 525.5 521.1 516.4 545.7 475.4

 8 546.8 556 565.4 560.9 541.4 557.3 528.1 556.1 560.7 548.5 556.1 552 510.5

 9 635.2 640.6 641 614.5 630.7 649.7 614.7 633.6 636.9 610.1 630.9 653.9 586.9

 10 668.6 701 695.9 669.8 675.9 697.8 659.8 695 679 660.9 685.4 709.3 634.4

100 1 1306.5 1376.1 1341.7 1299.5 1348.5 1387.7 1269 1300.1 1366.2 1315.7 1355.5 1400.8 1231.5

 2 1243 1367 1309.1 1252.3 1311.1 1371.8 1246.1 1346.1 1371.5 1286.7 1307.4 1367.6 1173.6

 3 1176.6 1238.8 1241.2 1158.6 1218.2 1278.1 1135.7 1198.4 1233.2 1175.1 1216.9 1264.8 1081.6

 4 1413.8 1432.6 1434.4 1354 1444.5 1460.6 1374.4 1462.6 1448.6 1377.9 1423.6 1458.7 1300.3

 5 1395.3 1384.3 1442 1388.3 1446.2 1454.1 1392.7 1453.5 1466.8 1379.4 1457.7 1517.5 1355.4

 6 1274.2 1351.3 1339 1254.4 1336.3 1367.8 1298.6 1322.2 1386.4 1297.6 1340.6 1380.2 1205.7

 7 1290 1320.6 1368.1 1272.5 1374.3 1397.1 1317.2 1400.7 1402.4 1360.6 1428.1 1397.3 1252.7

 8 1245.3 1272.9 1256.2 1212.2 1289.9 1285.8 1248 1258.5 1298.5 1236.8 1275.7 1347.9 1171.9

 9 1204.7 1261 1284.3 1192.9 1290.6 1311.2 1200.8 1244.7 1302.8 1217.8 1263.1 1295.3 1128.6

 10 1301.8 1330.9 1385.6 1340.4 1365.1 1383.3 1308 1403.9 1363.4 1305.3 1388.5 1425.9 1263.3

200 1 2452.7 2718.9 2662.7 2544.4 2732.1 2724.1 2470.3 2645.8 2704.7 2522 2717.6 2735.3 2245.3

 2 2452.8 2667.5 2671.1 2585.2 2717.6 2742.1 2489.8 2663.6 2625.9 2563.1 2714.8 2765.3 2275.4

 3 2483.6 2707.8 2686.8 2639 2697.8 2737.7 2460.6 2662.2 2668.6 2560.3 2711 2778.6 2263.7

 31

 4 2702 2874.9 2912.8 2860 2900.5 2975.7 2701.9 2841.2 2948.4 2760.1 2934.5 3010.2 2489.7

 5 2459.4 2595.5 2663.5 2549.8 2681.6 2719.3 2503.6 2713.2 2622.1 2609.1 2684.7 2690.9 2276.3

 6 2600.1 2724.3 2716.6 2714 2824.5 2831.4 2588.4 2826.4 2836.7 2793.5 2858.8 2872.7 2370.8

 7 2687 2829.4 2875.6 2762.2 2937.7 2948.1 2734.9 2919.3 2940.1 2845.8 2961.8 2947.9 2526.7

 8 2439.3 2682.8 2638.4 2568.8 2733.1 2718.9 2454.8 2655.5 2687.1 2592.1 2708.4 2751.1 2229.2

 9 2359.4 2575.6 2555.6 2533.5 2582.2 2599.5 2387.7 2565.9 2557 2551.4 2619.5 2622.4 2193.4

 10 2536.2 2621.5 2686.9 2574.7 2738.4 2761.9 2518.8 2707 2659.7 2618.2 2720.1 2775.1 2300.3

300 1 4012.5 4401.7 4439.1 4299.5 4452.9 4482.7 4027 4388.1 4415.4 4415.2 4448.9 4515.4 3697.2

 2 3725.1 4069.3 4133.3 3968 4183.7 4184.2 3745 4100.7 4110 4107.6 4121.9 4184.5 3356.2

 3 3878.9 4171.1 4207.4 4194.9 4244.4 4269.1 3870.2 4166.2 4146.9 4187.2 4209.9 4257.2 3513.2

 4 3915.7 4360 4278.7 4236.9 4370.3 4397.8 3978.4 4284.5 4300.8 4236.9 4368.5 4386.6 3680.4

 5 3787.8 4053.7 4130 4066 4177.8 4192 3820.6 4142.8 4119.9 4027.2 4222 4239.9 3466.3

 6 3765.2 4109.7 4051.2 3993.4 4163.8 4097 3765.3 3996.5 3976 4059.1 4123.4 4120.9 3434.8

 7 3786.4 4166.7 4183.3 4088.9 4195.8 4126.2 3791.4 4087.2 4166.7 4192.4 4237 4230.4 3441.3

 8 3606.5 4056.9 3969.8 3901.2 4044.8 4042.8 3540.3 3903.1 3986.7 3953.7 4000 4071.1 3227.4

 9 4014.2 4314.5 4465.1 4322 4426.2 4413 4036.3 4302.8 4378.5 4269.9 4419.5 4415.9 3679

 10 3868.1 4233.5 4149.8 4176.9 4273.4 4278.5 3860.1 4236.9 4186.7 4257.4 4301.2 4314.3 3503.7

Table A2. Comparison results between heuristic algorithms with Dueling DQN

Instances
Algorithms

BFD-LPT BFD-RAND BFD-LPS BFD-SJS FFD-LPT FFD-RAND FFD-LPS FFD-SJS RAND LIMA-RAND CPLEX Dueling DQN

50 1 612.2 712.6 657.4 788.7 693.4 677.3 657.4 788.7 627.5 612.2 600 612.2

 2 634.7 730.7 706.9 849.5 774 724.3 706.9 849.5 672.6 635.8 631.2 634.7

 3 640.2 683.9 716.4 821 747.3 693.8 716.4 821 656.7 629.3 625.9 626.7

 4 603.8 652.8 704.1 787.9 686 663.5 704.1 787.9 623.1 584.6 585.2 581

 32

 5 700.9 760.9 797 952.3 786.2 755.9 797.9 908.3 707 670.2 649.7 674.7

 6 459.1 581.8 556.9 654.1 525.3 565.9 556.9 654.1 498.3 462.1 476.5 458.3

 7 488.1 573.5 545.6 677.9 571 548.8 545.6 677.9 508.8 477.2 465.8 475.4

 8 515.6 601 594.5 723.8 621 600.9 594.5 723.8 539.8 515.6 514.9 510.5

 9 589.6 686.8 691.8 890.7 791 686.1 695.1 890.7 638 594.5 593.6 586.9

 10 634.4 722.4 752 911.6 714.9 731.3 752 911.6 677.6 635.7 661.2 634.4

100 1 1225.7 1449.8 1460.9 1723.3 1438.6 1455.9 1444.1 1723.3 1333.7 1244.8 1296.3 1231.5

 2 1182.2 1406.2 1362.7 1627.9 1418.9 1416.5 1360.7 1627.9 1276.8 1192.3 1269.6 1173.6

 3 1091 1330.3 1280.8 1551.4 1268.5 1317.5 1258.7 1551.4 1165.1 1098.9 1171 1081.6

 4 1300.5 1537 1461.3 1800.5 1463 1541.9 1490.8 1800.5 1403.5 1313.7 1414.9 1300.3

 5 1355.4 1540.9 1499.1 1858.6 1506.9 1532.4 1497.7 1858.6 1443.5 1356.6 1383.2 1355.4

 6 1227.9 1431.5 1467.4 1701.1 1411.1 1423.6 1467.4 1701.1 1332.6 1240.7 1317 1205.7

 7 1253.4 1507.4 1450.5 1847.5 1418.7 1470.5 1450.5 1847.5 1367 1262.3 1366.1 1252.7

 8 1164.6 1369.7 1299.1 1600.9 1384.2 1378.8 1297.5 1600.9 1259.4 1177.6 1238.2 1171.9

 9 1129.7 1354.6 1330.8 1632.7 1321.9 1341.5 1319.6 1632.7 1226.5 1131.3 1194.2 1128.6

 10 1263.3 1456.1 1490.1 1794.6 1506.4 1463.3 1469.8 1794.6 1372.1 1276 1358.2 1263.3

200 1 2254.5 2835.1 2631.9 3277.3 2746.6 2846.7 2619.4 3265.6 2555.9 2278.4 2885.6 2245.3

 2 2290.4 2813.4 2694.3 3301.9 2717 2799.8 2661.3 3301.9 2547.1 2298.3 2855.5 2275.4

 3 2279.2 2845.3 2653.3 3252.3 2735.9 2858.9 2614 3252.3 2540.8 2306 2937.1 2263.7

 4 2505.8 3049.4 2888.3 3623.1 3123.2 3049.2 2862 3623.1 2792.2 2535.9 3082.5 2489.7

 5 2280.3 2826.6 2690.8 3298.8 2717.6 2799.5 2652.7 3298.8 2537.2 2304.6 2882.5 2276.3

 6 2388.3 2952 2745.6 3457.3 2956.5 2975.6 2744.5 3422.7 2678.2 2413.1 3051.2 2370.8

 7 2530.7 3055.2 2923.1 3541.7 3155.6 3097.1 2910.4 3521.2 2828.5 2573.1 3136.1 2526.7

 8 2235.3 2802.4 2666.3 3404.3 2691.1 2829.9 2649 3404.3 2505.3 2267.7 2865.1 2229.2

 9 2190.4 2701.7 2618.8 3236.9 2601 2704.1 2618.8 3236.9 2451.7 2227.3 2612.4 2193.4

 33

 10 2300.7 2803.8 2719.5 3354.3 2809.6 2848.8 2722.1 3354.3 2615.8 2379.2 2926.3 2300.3

300 1 3688.9 4583.5 4361.7 5253.7 4324.1 4585.9 4368.2 5253.7 4177 3761.3 4757.2 3697.2

 2 3373.2 4314.7 4004.2 4978.5 3989.4 4320.4 3986.9 4984.9 3796.7 3430.7 4396.1 3356.2

 3 3514.4 4371.9 4081.8 5078.9 4250.9 4359.6 4047.1 5078.9 3984.7 3574.3 4612.5 3513.2

 4 3648.3 4496.9 4380.9 5244.8 4303 4523.8 4327.4 5225 4073.3 3694.3 4638.1 3680.4

 5 3416 4310.8 4028.5 5095.5 4216.6 4346.7 3998.8 5024.7 3924.3 3484.5 4401.1 3466.3

 6 3431.9 4275.1 4016 4903.4 4036.7 4297.2 3967.5 4891.7 3874.3 3477.1 4342.8 3434.8

 7 3453.1 4361.7 4069.4 5072.2 4161.9 4361.7 4041.8 5058.9 3965.7 3505.3 4513.7 3441.3

 8 3228.4 4215.4 3765 4789.4 3914.3 4199.7 3767.2 4772 3706.1 3268.8 4312 3227.4

 9 3664.4 4534.2 4329.1 5363.9 4365.3 4590.2 4283.8 5363.9 4172.4 3753.8 4602.5 3679

 10 3522.3 4373.7 4240.8 5179 4169.1 4376.6 4232.6 5163.6 3989.8 3578.7 4559 3503.7

